Advertisement

Astronomy Reports

, Volume 62, Issue 12, pp 847–852 | Cite as

Equilibrium Configurations of Rotating White Dwarfs at Finite Temperatures

  • K. BoshkayevEmail author
Article
  • 12 Downloads

Abstract

In this work, cold and hot, static and rotating white dwarf stars are investigated within the framework of classical physics, employing the Chandrasekhar equation of state. The main parameters of white dwarfs such as the central density, pressure, total mass and radius are calculated fulfilling the stability criteria for hot rotating stars. To construct rotating configurations the Hartle approach is involved. It is shown that the effects of finite temperatures become crucial in low-mass white dwarfs, whereas rotation is relevant in all mass range. The simultaneous accounting for temperature and rotation is critical in the calculation of the radii of white dwarfs. The results obtained in this work can be applied to explain a variety of observational data for white dwarfs from the Sloan Digital Sky Survey Data Releases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ya. B. Zel’dovich and I. D. Novikov, Relativistic Astrophysics: Stars and Relativity (Univ. of Chicago Press, Chicago, USA, 1971).Google Scholar
  2. 2.
    S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley-Interscience, New York, 1983).CrossRefGoogle Scholar
  3. 3.
    N. K. Glendenning, Compact Stars Nuclear Physics, Particle Physics, and General Relativity (Springer, New York, 2000).zbMATHGoogle Scholar
  4. 4.
    P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars 1: Equation of State and Structure, Vol. 326 of Astrophysics and Space Science Library (Springer Science, New York, 2007).CrossRefGoogle Scholar
  5. 5.
    V. Weidemann and D. Koester, Astron. Astrophys. 121, 77 (1983).ADSGoogle Scholar
  6. 6.
    S. Catalan, J. Isern, E. Garciá-Berro, and I. Ribas, Mon. Not. R. Astron. Soc. 387, 1693 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    S. Chandrasekhar, Astrophys. J. 74, 81 (1931).ADSCrossRefGoogle Scholar
  8. 8.
    G. G. Arutyunyan, D. M. Sedrakyan, and É. V. Chubaryan, Astrophysics 7, 274 ( 1971).Google Scholar
  9. 9.
    M. Rotondo, J. A. Rueda, R. Ruffini, and S. Xue, Phys. Rev. D 84, 084007 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    S. O. Kepler, D. Koester, and G. Ourique, Science (Washington, DC, U. S.) 352, 67 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    S. O. Kepler, I. Pelisoli, D. Koester, G. Ourique, et al., Mon. Not. R. Astron. Soc. 446, 4078 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    S. O. Kepler, I. Pelisoli, D. Koester, G. Ourique, et al., Mon. Not. R. Astron. Soc. 455, 3413 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    D. Koester and S. O. Kepler, Astron. Astrophys. 583, 9 (2015).CrossRefGoogle Scholar
  14. 14.
    S. O. Kepler, S. J. Kleinman, A. Nitta, D. Koester, B. G. Castanheira, O. Giovannini, A. F. M. Costa, and L. Althaus, Mon. Not. R. Astron. Soc. 375, 1315 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    K. A. Boshkayev, J. A. Rueda, B. A. Zhami, Zh.A. Kalymova, and G. Sh. Balgymbekov, Int. J. M. P.: Conf. Ser. 41, 1660129 (2016).Google Scholar
  16. 16.
    K. A. Boshkayev, J. A. Rueda, and B. A. Zhami, in Gravitation, Astrophysics, and Cosmology, Proceedings of the 13 Asia-Pacific International Conference, Ed. by Hsu Jong-Ping et al. (2016), p. 189.Google Scholar
  17. 17.
    S. M. de Carvalho, M. Rotondo, J. A. Rueda, and R. Ruffini, Phys. Rev. C 89, 015801 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    K. Boshkayev, J. A. Rueda, and R. Ruffini, Int. J.M. P. E. 20, 136 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    K. Boshkayev, J. A. Rueda, R. Ruffini, and I. Siutsou, Astrophys. J. 762, 117 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    K. Boshkayev, J. A. Rueda, R. Ruffini, and I. Siutsou, J. Korean Phys. Soc. 65, 855 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    K. Boshkayev, J. A. Rueda, R. Ruffini, and I. Siutsou, in Proceedings of the 13th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Ed. by R. T. Jantzen, K. Rosquist, R. Ruffini (2015), Vol. 3, p. 2468.Google Scholar
  22. 22.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).Google Scholar
  23. 23.
    F. X. Timmes, and D. Arnett, Astrophys. J. Suppl. Ser. 125, 277 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    A. Mathew and M. K. Nandy, Res. Astron. Astrophys. 17, 061 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    J. B. Hartle, Astrophys. J. 150, 1005 (1967).ADSCrossRefGoogle Scholar
  26. 26.
    J. B. Hartle and K. S. Thorne, Astrophys. J. 153, 807 (1968).ADSCrossRefGoogle Scholar
  27. 27.
    K. Boshkayev, H. Quevedo, Zh. Kalymova, and B. Zhami, Eur. J. Phys. 37, 065602 (2016).CrossRefGoogle Scholar
  28. 28.
    R. C. Tolman, Phys. Rev. 35, 904 (1930).ADSCrossRefGoogle Scholar
  29. 29.
    P.-E. Tremblay, P. Bergeron, and A. Gianninas, Astrophys. J. 730, 128 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    G. A. Carvalho, R. M. Marinho, and M. Malheiro, Gen. Rel. Grav. 50, 38 (2018).ADSCrossRefGoogle Scholar
  31. 31.
    D. Koester, Astron. Astrophys. 52, 415 (1976).ADSGoogle Scholar
  32. 32.
    K. Boshkayev, L. Izzo, J. A. Rueda, and R. Ruffini, Astron. Astrophys. 555, 9 (2013).CrossRefGoogle Scholar
  33. 33.
    J. A. Rueda, K. Boshkayev, R. Ruffini, P. Loren-Aguilar, B. Kulebi, G. Aznar-Siguan, and E. Garcia-Berro, Astrophys. J. Lett. 772, L24 (2013).Google Scholar
  34. 34.
    K. Boshkayev, J. A. Rueda, and R. Ruffini, in Proceedings of the 13th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Ed. by R. T. Jantzen, K. Rosquist, and R. Ruffini (2015), Vol. 3, p. 2295.Google Scholar
  35. 35.
    K. Boshkayev, H. Quevedo, and B. Zhami, Mon. Not. R. Astron. Soc. 464, 4349 (2017).ADSCrossRefGoogle Scholar
  36. 36.
    K. Boshkayev and H. Quevedo, Mon. Not. R. Astron. Soc. 478, 1893 (2018); arXiv:1709.04593.ADSCrossRefGoogle Scholar
  37. 37.
    M. Malheiro, J. A. Rueda, and R. Ruffini, Publ. Astron. Soc. Jpn. 64, 56 (2012).ADSCrossRefGoogle Scholar
  38. 38.
    J. G. Coelho, R. M. Marinho, M. Malheiro, R. Negreiros, D. L. Caceres, J. A. Rueda, and R. Ruffini, Astrophys. J. 794, 86 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    J. G. Coelho and M. Malheiro, Publ. Astron. Soc. Jpn. 66, 14 (2014).ADSCrossRefGoogle Scholar
  40. 40.
    R. V. Lobato, M. Malheiro, and J. G. Coelho, Int. J.M. P. D. 25, 1641025 (2016).ADSCrossRefGoogle Scholar
  41. 41.
    J. G. Coelho, D. L. Caceres, R. C. R. de Lima, M. Malheiro, J. A. Rueda, and R. Ruffini, Astron. Astrophys. 599, A87 (2017).Google Scholar
  42. 42.
    D. Alvear Terrero, D. Manreza Paret, and A. Perez Martinez, Astron. Nachr. 338, 1056 (2017).ADSCrossRefGoogle Scholar
  43. 43.
    D. Alvear Terrero, D. Manreza Paret, and A. Perez Martinez, Int. J.M.P.: Conf.Ser. 45, 1760025 (2017).Google Scholar
  44. 44.
    D. Alvear Terrero, D. Manreza Paret, and A. Perez Martinez, Int. J. M.P. D. 27, 1850016 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.NNLOT, al-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.Nazarbayev UniversityAstanaKazakhstan
  3. 3.ICRANetPescaraItaly

Personalised recommendations