Advertisement

Astronomy Reports

, Volume 62, Issue 12, pp 834–839 | Cite as

Supernova Explosion Mechanism with the Neutrinos and the Collapse of the Rotation Core

  • A. G. Aksenov
  • V. M. Chechetkin
Article
  • 9 Downloads

Abstract

Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collapse supernovae. In this work the multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SNII and for setting up observations to register possible high-energy (≲10 MeV) neutrinos from the supernova. In compare with the previous work describing a new multidimensional gas dynamics method with neutrino transport we investigate the role of the rotation in the convection.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hüdepohl, and S. Chakraborty, Nuovo Cimento Riv. Ser. 39, 1 (2016); arXiv: 1508.00785.ADSGoogle Scholar
  2. 2.
    W. A. Fowler and F. Hoyle, Astrophys. J. Suppl. 9, 201 (1964).ADSCrossRefGoogle Scholar
  3. 3.
    V. S. Imshennik and D. K. Nadezhin, Astrophys. Space Phys. Rev. 8, 1 (1989).ADSGoogle Scholar
  4. 4.
    H. A. Bethe, Rev.Mod. Phys. 62, 801 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    H.-T. Janka, K. Langanke, A. Marek, G. Marti´nez-Pinedo, and B. Müller, Phys. Rep. 442, 38 (2007); astro-ph/0612072.ADSCrossRefGoogle Scholar
  6. 6.
    V. S. Imshennik and D. K. Nadezhin, Sov. Phys. JETP 36, 821 (1973).ADSGoogle Scholar
  7. 7.
    D. K. Nadezhin, Astrophys. Space Sci. 49, 399 (1977).ADSCrossRefGoogle Scholar
  8. 8.
    S.W. Bruenn, Astrophys. J. Suppl. 58, 771 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    L. Dessart, A. Burrows, E. Livne, and C. D. Ott, Astrophys. J. Lett. 673, L43 (2008); arXiv: 0710.5789.Google Scholar
  10. 10.
    F. D. Swesty and E. S. Myra, Astrophys. J. Suppl. 181, 1 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    B. Müller, H.-T. Janka, and H. Dimmelmeier, Astrophys. J. Suppl. 189, 104 (2010); arXiv: 1001.4841.ADSCrossRefGoogle Scholar
  12. 12.
    A. Mezzacappa and S.W. Bruenn, Astrophys. J. 405, 637 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    A. Mezzacappa and S.W. Bruenn, Astrophys. J. 405, 669 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    A. Mezzacappa and S.W. Bruenn, Astrophys. J. 410, 740 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    A. Mezzacappa, M. Liebendörfer, O. E. Messer, W.R. Hix, ·F.-K. Thielemann, and S.W. Bruenn, Phys. Rev. Lett. 86, 1935 (2001); astro-ph/0005366.ADSCrossRefGoogle Scholar
  16. 16.
    E. J. Lentz, A. Mezzacappa, O. E. B. Messer, M. Liebendörfer, W. R. Hix, and S. W. Bruenn, Astrophys. J. 747, 73 (2012); arXiv: 1112.3595.ADSCrossRefGoogle Scholar
  17. 17.
    M. Herant, W. Benz, W. R. Hix, C. L. Fryer, and S. A. Colgate, Astrophys. J. 435, 339 (1994); astroph/9404024.ADSCrossRefGoogle Scholar
  18. 18.
    A. Burrows, J. Hayes, and B. A. Fryxell, Astrophys. J. 450, 830 (1995); astro-ph/9506061.ADSCrossRefGoogle Scholar
  19. 19.
    J. W. Murphy and C. Meakin, Astrophys. J. 742, 74 (2011); arXiv: 1106.5496.ADSCrossRefGoogle Scholar
  20. 20.
    J. C. Dolence, A. Burrows, and W. Zhang, Astrophys. J. 800, 10 (2015), ArXiv: 1403.6115.ADSCrossRefGoogle Scholar
  21. 21.
    S. M. Couch and C. D. Ott, Astrophys. J. Lett. 778, L7 (2013), arXiv: 1309.2632.Google Scholar
  22. 22.
    A. Wongwathanarat, E. Müller, and H.-T. Janka, Astron. Astrophys. 577, A48 (2015); arXiv: 1409.5431.Google Scholar
  23. 23.
    S. M. Couch and C. D. Ott, Astrophys. J. 799, 5 (2015); arXiv: 1408.1399.ADSCrossRefGoogle Scholar
  24. 24.
    D. Radice, C. D. Ott, E. Abdikamalov, S. M. Couch, R. Haas, and E. Schnetter, Astrophys. J. 820, 76 (2016); arXiv: 1510.05022.ADSCrossRefGoogle Scholar
  25. 25.
    V.M. Chechetkin, S. D. Ustyugov, A. A. Gorbunov, and V. I. Polezhaev, Astron. Lett. 23, 30 (1997).ADSGoogle Scholar
  26. 26.
    V. M. Suslin, M. Y. Khlopov, V. M. Chechetkin, and V. A. Chuyanov, Astron. Rep. 40, 358 (1996).ADSGoogle Scholar
  27. 27.
    I. V. Baikov, V. M. Suslin, V.M. Chechetkin, V. Bychkov, and L. Stenflo, Astron. Rep. 51, 274 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 56, 193 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 58, 442 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    A. G. Aksenov and V. M. Chechetkin, Phys. At. Nucl. 81, 128 (2018).CrossRefGoogle Scholar
  31. 31.
    V. M. Chechetkin and A. G. Aksenov, Astron. Rep. 62, 251 (2018).ADSCrossRefGoogle Scholar
  32. 32.
    A. G. Aksenov, Comput.Math. Math. Phys. 55, 1752 (2015).MathSciNetCrossRefGoogle Scholar
  33. 33.
    G. Vereshchagin and A. Aksenov, Relativistic Kinetic Theory With Applications in Astrophysics and Cosmology (Cambridge Univ. Press, Cambridge, 2017).CrossRefzbMATHGoogle Scholar
  34. 34.
    A. G. Aksenov, Astron. Lett. 24, 482 (1998).ADSGoogle Scholar
  35. 35.
    R. M. Bionta, G. Blewitt, C. B. Bratton, D. Casper, and A. Ciocio, Phys. Rev. Lett. 58, 1494 (1987).ADSCrossRefGoogle Scholar
  36. 36.
    K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, and Y. Oyama, Phys. Rev. Lett. 58, 1490 (1987).ADSCrossRefGoogle Scholar
  37. 37.
    E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, and I. V. Krivosheina, JETP Lett. 45, 589 (1987).ADSGoogle Scholar
  38. 38.
    R. Schaeffer, Y. Declais, and S. Jullian, Nature (London, U.K.) 330, 142 (1987).ADSCrossRefGoogle Scholar
  39. 39.
    P. Ledoux, Astrophys. J. 105, 305 (1947).ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    G. S. Bisnovatyj-Kogan, Physical Problems in the Theory of Stellar Evolution (Nauka, Moscow, 1989) [in Russian].Google Scholar
  41. 41.
    A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 60, 655 (2016).ADSCrossRefGoogle Scholar
  42. 42.
    V. Aksenov, A. G. Tishkin, and V. Chechetkin, Math. Model. 30 (9), 51 (2018) (in Russian).Google Scholar
  43. 43.
    A. G. Aksenov, Astron. Lett. 25, 185 (1999).ADSGoogle Scholar
  44. 44.
    G. S. Bisnovatyi-Kogan, Astrophysics 55, 387 (2012); arXiv: 1203.0997.ADSCrossRefGoogle Scholar
  45. 45.
    A.G. Aksenov and S. I. Blinnikov, Astron. Astrophys. 290, 674 (1994).ADSGoogle Scholar
  46. 46.
    S. Chandrasekhar and N. R. Lebovitz, Astrophys. J. 138, 185 (1963).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute for Computer Aided Design of the Russian Academy of SceincesMoscowRussia
  2. 2.Keldysh Institute of Applied MathematicsMoscowRussia

Personalised recommendations