Astronomy Reports

, Volume 62, Issue 12, pp 998–1002 | Cite as

Kinematics of OB Associations and the First Data from the Gaia Satellite

  • A. M. Mel’nikEmail author
  • A. K. Dambis


The first data release from the Gaia mission (Gaia DR1) is used to study kinematics of OB associations. The mean velocity dispersion in 18 OB associations containing at least 10 stars with proper motions from the TGAS catalog is 3.9 km/s. The contribution of binary systems to the velocity dispersions in OB associations is, on average, 1.2 km/s. Expansion of the OB associations Per OB1 and Car OB1 is observed. This paper is based on a presentation made at the conference “Modern Astrometry 2017,” dedicated to the memory of K.V. Kuimov (Sternberg Astronomical Institute, Moscow State University, October 23–25, 2017).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Michalik, L. Lindegren, and D. Hobbs, Astron. Astrophys. 574, A115 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, et al., Astron. Astrophys. 595, A2 (2016).CrossRefGoogle Scholar
  3. 3.
    The Hipparcos and Tycho Catalogs, ESA SP-1200 (1997).Google Scholar
  4. 4.
    T. Prusti, J.H. J. de Bruijne, A.G. A. Brown, A. Vallenari, et al., Astron. Astrophys. 595, A1 (2016).Google Scholar
  5. 5.
    C. Blaha and R. M. Humphreys, Astron. J. 98, 1598 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    V. A. Ambartsumian, Sov. Astron. 26, 3 (1949).Google Scholar
  7. 7.
    D. B Sanders, N. Z. Scoville, and P. M. Solomon, Astrophys. J. 289, 373 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    R. B. Larson, Mon. Not. R. Astron. Soc. 194, 809 (1981).ADSCrossRefGoogle Scholar
  9. 9.
    M. R. Krumholz, C. D. Matzner, and C. F. McKee, Astrophys. J. 653, 361 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    B. G. Elmegreen, Astrophys. J. 854, 16 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    A. Blaauw, Ann. Rev. Astron. Astrophys. 2, 213 (1964).ADSCrossRefGoogle Scholar
  12. 12.
    A. V. Tutukov, Astron. Astrophys. 70, 57 (1978).ADSGoogle Scholar
  13. 13.
    J. G. Hills, Astrophys. J. 225, 986 (1980).ADSCrossRefGoogle Scholar
  14. 14.
    P. Kroupa, S. Aarseth, and J. Hurley, Mon. Not. R. Astron. Soc. 321, 699 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    C. M. Boily and P. Kroupa, Mon. Not. R. Astron. Soc. 338, 673 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    P. Kroupa, Science (Washington, DC, U. S.) 295, 82 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    P. C. Myers, T. M. Dame, P. Thaddeus, R. S. Cohen, R. F. Silverberg, E. Dwek, and M. G. Hauser, Astrophys. J. 301, 398 (1986).ADSCrossRefGoogle Scholar
  18. 18.
    N. J. Evans, II, M. M. Dunham, J. K. Jshrgensen, M. L. Enoch, et al., Astrophys. J. Suppl. 181, 321 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    P. Garcia, L. Bronfman, L.-A. Nyman, T. M. Dame, and A. Luna, Astrophys. J. Suppl. 212, 2 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    A. M. Mel’nik and A. K. Dambis, Mon. Not. R. Astron. Soc. 472, 3887 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    H. Sana, in IAU Symposium 329: The Lives and Death-Throes of Massive Stars (Cambridge University Press), p. 110 (2017).Google Scholar
  22. 22.
    E. J. Aldoretta, S. M. Caballero-Nieves, D. R. Gies, E. P. Nelan, et al., Astron. J. 149, 26 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations