Acoustical Physics

, Volume 65, Issue 3, pp 263–268 | Cite as

Development and Study of Composite Acoustic Resonators with Al/(Al, Sc)N/Mo/Diamond Structure with a High Q Factor in the UHF Range

  • B. P. SorokinEmail author
  • A. S. NovoselovEmail author
  • G. M. Kvashnin
  • N. V. Luparev
  • N. O. Asafiev
  • A. B. Shipilov
  • V. V. Aksenenkov

The paper demonstrates for the first time the possibility of using aluminum nitride–scandium as an effective piezoelectric material in composite acoustic resonators on synthetic diamond substrates. Composite resonators based on an Al/(Al, Sc)N/Mo/(100) diamond piezoelectric layered structure with three Sc concentrations have been studied in the frequency range of 0–20 GHz. It is shown that such resonators can be excited in a wide frequency range from 0.2 to 20 GHz with Q factors relatively on par with similar devices using pure aluminum nitride. The quality parameter Qf ≈ 3 × 1014 Hz in a resonator sample based on the Al/Al0.7Sc0.3N/Mo/(100) diamond structure is comparable to the similar record value for composite resonators on diamond substrates and thin-film piezoelectric AlN transducers. The maximum values of the squared effective electromechanical coupling coefficient for composite BAW resonators increased by almost an order of magnitude upon replacing an AlN with an ASN film.


composite acoustic resonator synthetic diamond aluminum nitride scandium-aluminium nitride bulk acoustic wave piezoelectric layered structure Q factor 



This study was supported by the Russian Science Foundation (grant no. 16-12-10 293).


  1. 1.
    B. P. Sorokin, G. M. Kvashnin, A. S. Novoselov, V. S. Bormashov, A. V. Golovanov, S. I. Burkov, and V. D. Blank, Ultrasonics 78, 162 (2017).CrossRefGoogle Scholar
  2. 2.
    K. Länge, B. E. Rapp, and M. Rapp, Anal. Bioanal. Chem. 391 (5), 1509 (2008).CrossRefGoogle Scholar
  3. 3.
    V. Yantchev and I. Katardjiev, J. Micromech. Microeng. 23 (4), 043001 (2013).CrossRefGoogle Scholar
  4. 4.
    C. Zhao, M. H. Montaseri, G. S. Wood, S. H. Pu, A. A. Seshia, and M. Kraft, Sens. Actuators, A 249, 93 (2016).CrossRefGoogle Scholar
  5. 5.
    M. S. Lozano, Z. Chen, O. A. Williams, and G. F. Iriarte, Smart Mater. Struct. 27, 0 (2018).Google Scholar
  6. 6.
    M. Yu. Dvoesherstov and V. I. Cherednik, Acoust. Phys. 61 (6), 657 (2015).CrossRefGoogle Scholar
  7. 7.
    V. A. Mostyaev and V. I. Dyuzhikov, Technology of Piezo- and Acousto-Electronic Devices (Yaguar, Moscow, 1993) [in Russian].Google Scholar
  8. 8.
    K. M. Lakin, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 52 (5), 707 (2005).CrossRefGoogle Scholar
  9. 9.
    H. Zhang, W. Pang, H. Yu, and E. S. Kim, J. Appl. Phys. 99, 124911 (2006).CrossRefGoogle Scholar
  10. 10.
    S. G. Alekseev, G. D. Mansfel’d, N. I. Polzikova, and I. M. Kotelyanskii, Acoust. Phys. 53 (4), 465 (2007).CrossRefGoogle Scholar
  11. 11.
    G. Wingqvist, Surf. Coat. Technol. 205 (5), 1279 (2010).CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, J. Luo, A. J. Flewitt, Z. Cai, and X. Zhao, Biosens. Bioelectron. 116, 1 (2018).CrossRefGoogle Scholar
  13. 13.
    T. Daugey, J. M. Friedt, G. Martin, and R. Boudot, Rev. Sci. Instrum. 86, 114703 (2015).CrossRefGoogle Scholar
  14. 14.
    D. Rabus, J. M. Friedt, S. Ballandras, T. Baron, E. Lebrasseur, and E. Carry, J. Appl. Phys. 118, 114505 (2015).CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, Z. Wang, and J. D. N. Cheeke, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 50, 321 (2003).CrossRefGoogle Scholar
  16. 16.
    C. Caliendo and P. Imperatori, Appl. Phys. Lett. 83 (8), 1641 (2003).CrossRefGoogle Scholar
  17. 17.
    I. C. Oliveira, K. G. Grigorov, H. S. Maciel, M. Massi, and C. Otani, Vacuum 75 (4), 331 (2004).CrossRefGoogle Scholar
  18. 18.
    N. D. Patel and P. S. Nicholson, NDT Int. 23 (5), 262 (1990).CrossRefGoogle Scholar
  19. 19.
    O. Zywitzki, T. Modes, S. Barth, H. Bartzsch, and P. Frach, Surf. Coat. Technol. 309, 417 (2017).CrossRefGoogle Scholar
  20. 20.
    A. Teshigahara, K. Y. Hashimoto, and M. Akiyama, in Proc. 2012 IEEE Int. Ultrasonics Symposium (Dresden, October 7–10, 2012), p. 1.Google Scholar
  21. 21.
    K. Umeda, H. Kawai, A. Honda, M. Akiyama, T. Kato, and T. Fukura, in Proc. MEMS (Taipei, January 20–24, 2013), p. 733.Google Scholar
  22. 22.
    B. P. Sorokin, G. M. Kvashnin, A. V. Telichko, G. I. Gordeev, S. I. Burkov, and V. D. Blank, Acoust. Phys. 61 (4), 422 (2015).CrossRefGoogle Scholar
  23. 23.
    B. P. Sorokin, A. V. Telichko, G. M. Kvashnin, V. S. Bormashov, and V. D. Blank, Acoust. Phys. 61 (6), 669 (2015).CrossRefGoogle Scholar
  24. 24.
    G. D. Mansfel’d, S. G. Alekseev, and N. I. Polzikova, Acoust. Phys. 54 (4), 475 (2008).CrossRefGoogle Scholar
  25. 25.
    R. Tabrizian, M. Rais-Zadeh, and F. Ayazi, in Proc. 15th Int. Conference on Solid-State Structures, Actuators and Microsystems (Denver, CO, 2009), p. 2131.Google Scholar
  26. 26.
    M. Moreira, J. Bjurström, I. Katardjev, and V. Yantchev, Vacuum 86, 23 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • B. P. Sorokin
    • 1
    • 2
    Email author
  • A. S. Novoselov
    • 1
    • 2
    Email author
  • G. M. Kvashnin
    • 1
  • N. V. Luparev
    • 1
  • N. O. Asafiev
    • 1
    • 2
  • A. B. Shipilov
    • 1
    • 2
  • V. V. Aksenenkov
    • 1
  1. 1.Technological Institute for Superhard and Novel Carbon MaterialsMoscowTroitskRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia

Personalised recommendations