Acoustical Physics

, Volume 65, Issue 3, pp 253–262 | Cite as

Numerical Investigation of Quasi-Lamb Modes in C‑Tilted ZnO/SiC Composite Membrane for High Performance Pressure Micro-Sensor

  • F. LaidoudiEmail author
  • F. Boubenider
  • M. Mebarki
  • F. Medjili
  • F. Bettine


Using the finite element method, we have studied the Lamb modes characteristics propagation in c‑tilted ZnO/SiC thin film composite membrane. Phase velocity dispersion curves, electromechanical coupling factors and the mass loading effect on the fundamental quasi Lamb modes are theoretically investigated for different rotating angle (0°, θ°, 90°), θ being the angle of rotation, and for different hZnO/λ values. To develop high performance pressure micro-sensor based on thin film piezoelectric ZnO on amorphous SiC (range 0.1 to 100 Pa) the anti-symmetric fundamental qA0 mode phase shift is studied for pressure sensing.


Finite element analysis acoustic quasi-Lamb modes thin piezoelectric films gravimetric measurement pressure sensor 


  1. 1.
    I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (Plenum Press, New York, NY, 1967).CrossRefGoogle Scholar
  2. 2.
    M. J. R. Naserabadi and S. Sodagar, Acoust. Phys. 63, 402 (2017).CrossRefGoogle Scholar
  3. 3.
    C. M. Lin, Y. Y. Chen, V. V. Felmetsger, D. G. Senesky, and A. P. Pisano, Adv. Mater. 24, 2722 (2012).CrossRefGoogle Scholar
  4. 4.
    I. V. Anisimkin, Acoust. Phys. 50 (2), 115 (2004).CrossRefGoogle Scholar
  5. 5.
    E. Verona, V. I. Anisimkin, V. A. Osipenko, and N. V. Voronova, Ultrasonics 76, 227(2017).CrossRefGoogle Scholar
  6. 6.
    V. I. Anisimkin and N. V. Voronova, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 58, 578 (2011).CrossRefGoogle Scholar
  7. 7.
    C. Caliendo, M. Hamidullah, and F. Laidoudi, Sensors 17, 1209 (2017).CrossRefGoogle Scholar
  8. 8.
    T. Mirea and V. Yantchev, Sens. Actuators, A 208, 212 (2015).CrossRefGoogle Scholar
  9. 9.
    C. Caliendo, Sens. Actuators, B 179, 287 (2013).CrossRefGoogle Scholar
  10. 10.
    I. E. Kuznetsova, B. D. Zaitsev, S. G. Joshi, and A. A. Teplykh, Acoust. Phys. 53, 557 (2007).CrossRefGoogle Scholar
  11. 11.
    Y. Q. Fu, J. K. Luo, X. Y. Du, A. J. Flewitt, Y. Li, G. H. Markx, A. J. Walton, and W. I. Milne, Sens. Actuators, B 143, 606 (2010).CrossRefGoogle Scholar
  12. 12.
    L. Qin, Q. Chen, H. Cheng, Q. Chen, J. F. Li, and Q. M. Wang, J. Appl. Phys. 110, 094511 (2011).CrossRefGoogle Scholar
  13. 13.
    C. Caliendo, S. Sait, and F. Boubenider, Micromachines 7, 15 (2016).CrossRefGoogle Scholar
  14. 14.
    L. Qin, Q. Chen, H. Cheng, and Q. M. Wang, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 57 (8) (2010).Google Scholar
  15. 15.
    O. C. Zienkiewicz and R.L. Taylor, The Finite Element Method for Solid and Structural Mechanics, 6th ed. (Elsevier, 2005).zbMATHGoogle Scholar
  16. 16.
    D. Alleyne and P. Cawley, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 39, 381 (1992).CrossRefGoogle Scholar
  17. 17.
    M. Suenaga, E. L. Adler, G. W. Farnell, J. M. Galligan, G. C. Joyce, F. L. Nagy, E. K. Sittig, and W. J. Spencer, Physical Acoustics: Principles and Methods (Academic Press, New York, 1972).Google Scholar
  18. 18.
    B. A. Auld, Acoustic Fields and Waves in Solids, (John Wiley and Sons, New York, 1973).Google Scholar
  19. 19.
    P. Vashishta, R. K. Kalia, A. Nakano, and J. P. Rino, J. Appl. Phys. 101, 103515 (2007).CrossRefGoogle Scholar
  20. 20.
    R. Zemčík and P. Sadílek, Appl. Comput. Mech. 1, 381 (2007).Google Scholar
  21. 21.
    Ş. Sorohan, N. Constantin, M. Găvan, and V. Anghel, Ultrasonics 51, 503 (2011).CrossRefGoogle Scholar
  22. 22.
    L. Fan, S. Y. Zhang, H. Ge, and H. Zhang, J. Appl. Phys. 114, 024504 (2013).CrossRefGoogle Scholar
  23. 23.
    E. Dieulesaint and D. Royer, Elastic Waves in Solids: Free and Guided Propagation (Springer, New York, 2000).zbMATHGoogle Scholar
  24. 24.
    S. H. Wang, C. Y. Shen, H. M. Huang, and Y. C. Shih, Sens. Actuators, A 216, 237 (2014).CrossRefGoogle Scholar
  25. 25.
    C. Caliendo, Sensors 15, 12841 (2015).CrossRefGoogle Scholar
  26. 26.
    C. M. Lin, V. Yantchev, J. Zou, Y. Y. Chen, and A. P. Pisano, J. Microelectromech. Syst. 23, 78 (2014).CrossRefGoogle Scholar
  27. 27.
    G. N. M. Ferreira, A. C. Da-Silva, and B. Tomé, Trends Biotechnol. 27, 689 (2009).CrossRefGoogle Scholar
  28. 28.
    G. Mchale, M. I. Newton, and F. Martin, J. Appl. Phys. 91, 9701 (2002).CrossRefGoogle Scholar
  29. 29.
    A. Kang, J. Ji, X. Lin, W. Wang, H. Li, C. Zhang, and T. Han, Sens. Actuators, A 187, 141 (2012).CrossRefGoogle Scholar
  30. 30.
    Q. Jiang, X. M. Yang, H. G. Zhou, and J. S. Yang, Sens. Actuators, A 118, 1 (2005).CrossRefGoogle Scholar
  31. 31.
    H. L. Li, Y. B. Ke, Y. H. Tian, W. Luo, S. T. He, and B. Hu, in Proc. IEEE Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) (Chengdu, 2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • F. Laidoudi
    • 1
    • 2
    Email author
  • F. Boubenider
    • 1
  • M. Mebarki
    • 1
  • F. Medjili
    • 2
  • F. Bettine
    • 2
  1. 1.Laboratory of Physics of Materials, Team “Waves and Acoustic”, University of Sciences and Technology, (USTHB) B.P.32 El AlliaBab-EzzouarAlgeria
  2. 2.Research Center in Industrial Technologies CRTI, P.O.Box64CheragaAlgeria

Personalised recommendations