Advertisement

Acoustical Physics

, Volume 64, Issue 5, pp 567–571 | Cite as

On Certain Characteristics of Ultrasound Attenuation in Suspensions of High-Molecular Oil Components

  • B. R. Akhmetov
  • A. V. Vakhin
PHYSICAL ACOUSTICS
  • 4 Downloads

Abstract

The paper presents experimental research data on the frequency and concentration dependences of additional ultrasound attenuation in mixtures of asphaltene in toluene. The results indicate that additional attenuation is determined by several different processes and has a relaxation nature. By juxtaposing the results to the data from several methods for studying similar model disperse systems, we show that changes in the concentration attenuation coefficient and its frequency dependence can provide additional information on structure transformations and phase transitions. The frequency dependence was measured in a range of 10–23 MHz. The concentration dependence was measured in the same frequency range from 0.1 to 10 wt %.

Keywords:

disperse systems high-molecular oil components asphaltenes supramolecular complexes structure transformations clusters attenuation coefficient relaxation theory structural absorption 

Notes

REFERENCES

  1. 1.
    Yu. M. Ganeeva, T. N. Yusupova, and G. V. Romanov, Usp. Khim. 80 (10), 1034 (2011).CrossRefGoogle Scholar
  2. 2.
    K. Akbarzade, A. Khammami, S. Allenson, D. Krik, A. Dzhamaluddin, A. Marshall, O. K. Mallins, and T. Solbakken, Neftegazov. Obozr.-Leto, 28 (2007).Google Scholar
  3. 3.
    F. G. Unger and L. N. Andreeva, Fundamental Aspects of Petroleum Chemistry. Nature of Resins and Asphaltenes (Nauka, Novosibirsk, 1995) [in Russian].Google Scholar
  4. 4.
    I. G. Mikhailov, V. A. Solov’ev, and Yu. P. Syrnikov, Foundations of Molecular Acoustics (Nauka, Moscow, 1964) [in Russian].Google Scholar
  5. 5.
    S. M. Rytov, V. V. Vladimirskii, and M. D. Galanin, Zh. Eksp. Teor. Fiz. 8 (5), 210 (1938).Google Scholar
  6. 6.
    M. N. Isakovich, Zh. Eksp. Teor. Fiz. 18 (10), 905 (1948).Google Scholar
  7. 7.
    I. A. Ratinskaya, Akust. Zh. 8 (2), 210 (1962).Google Scholar
  8. 8.
    C. Temkin and R. A. Dobbins, J. Acoust. Soc. Am. 40 (2), 317 (1966).ADSCrossRefGoogle Scholar
  9. 9.
    C. L. Morley, J. Sound Vib. 10 (8), 156 (1968).Google Scholar
  10. 10.
    P. S. Epstein and R. R. Carhart, J. Acoust. Soc. Am. 25 (3), 553 (1953).ADSCrossRefGoogle Scholar
  11. 11.
    I. S. Kol’tsova, I. G. Mikhailov, and G. S. Trofimov, Akust. Zh. 26 (4), 582 (1980).Google Scholar
  12. 12.
    M. Bucek and W. Marczak, J. Phys. (Paris) 129, 11 (2005).Google Scholar
  13. 13.
    L. M. Petrova, N. A. Abbakumova, I. M. Zaidullin, and D. N. Borisov, Pet. Chem. 53 (2), 81 (2013).CrossRefGoogle Scholar
  14. 14.
    S. Acevedo, A. Castro, E. Vasquez, F. Marcano, and M. Ranaudo, Energy Fuels 24, 5921 (2010).CrossRefGoogle Scholar
  15. 15.
    V. P. Sergun, E. Yu. Kovalenko, T. A. Sagachenko, and R. S. Min, Pet. Chem. 54 (2), 83 (2014).CrossRefGoogle Scholar
  16. 16.
    I. S. Kol’tsova and A. S. Khomutova, Acoust. Phys. 62 (6), 688 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    M. Yu. Dolomatov, S. A. Shutkova, and S. V. Dezortsev, J. Struct. Chem. 53 (3), 563 (2012).CrossRefGoogle Scholar
  18. 18.
    G. Andreatta, N. Bostrom, and O. Mullins, Langmuir 21, 2728 (2005).CrossRefGoogle Scholar
  19. 19.
    E. Durand, M. Clemancey, J.-M. Lancelin, J. Verstraete, D. Espinat, and A.-A. Quoineaud, Energy Fuels 24, 1051 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kazan Federal UniversityKazanRussia
  2. 2.Institute of Geology and Petroleum TechnologiesKazanRussia

Personalised recommendations