Advertisement

Modeling the Charge Collection from a Track of an Ionizing Particle in Upset Hardened CMOS Trigger Elements

  • 3 Accesses

Abstract

The charge collection from tracks of ionizing nuclear particles in CMOS trigger elements of the STG DICE type in the picosecond range is simulated using the 3D TCAD and the results are presented. The transient processes at the charge collection from tracks are analyzed (i) in the STG DICE D-trigger used for the cells of static memory, (ii) in the RS STG trigger, and (iii) in the logic C-element based on the STG DICE trigger for the asynchronous CMOS logic. The simulation results of the charge collection by the pn junctions of both off and on transistors are presented. It is established that the charge collection from a track by MOS transistors begins in the off or on state and then transits to the charge collection in the inverse mode. The duration of the charge collection until the voltage extremum at the node of the trigger CMOS elements of the bulk 65-nm technology ranges from 5.5 to 17 ps, and the increments in the voltages of the extremums (maximums or minimums) at the nodes with respect to the voltages at the supply bus or at the common bus vary from 0.14 to 0.82 V. The duration of transistor occurrence in the inverse state ranges from 2 to 100 ps. The charge collection from tracks with the linear energy transfer (LET) of 60 MeV cm2/mg do not lead to the upset of the logical function of the elements for the tracks through the transistors of one group of the STG DICE trigger when there is sufficient spacing between the groups of transistors. The investigation results are oriented to designing systems which operate under the conditions of the action of single nuclear particles.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. 1

    Calin, T., Nicolaidis, M., and Velazco, R., Upset hardened memory design for submicron CMOS technology, IEEE Trans. Nucl. Sci., 1996, vol. 43, no. 6, pp. 2874–2878.

  2. 2

    Katunin, Yu.V., Stenin, V.Ya., and Stepanov, P.V., Modeling the characteristics of trigger elements of two-phase CMOS logic, taking into account the charge sharing effect under exposure to single nuclear particles, Russ. Microelectron., 2014, vol. 43, no. 2, pp. 112–124.

  3. 3

    Stenin, V.Ya., Simulation of the characteristics of the DICE 28-nm CMOS cells in unsteady states caused by the effect of single nuclear particles, Russ. Microelectron., 2015, vol. 44, no. 5, pp. 324–334.

  4. 4

    Stenin, V.Ya., Katunin, Yu.V., and Stepanov, P.V., Upset-resilient RAM on STG DICE memory elements with the spaced transistors into two groups, Russ. Microelectron., 2016, vol. 45, no. 6, pp. 419–432.

  5. 5

    Seifert, N., Gill, B., Foley, K., and Relangi, P., Multi-cell upset probabilities of 45 nm high-k + metal gate SRAM devices in terrestrial and space environments, in Proceedings of IEEE International Reliability Physics Symposium,2008, pp. 181–186.

  6. 6

    Warren, K.M., Stenberg, A.L., Black, J.D., Weller, R.A., Reed, R.A., Mendenhall, M.H., Schrimpf, R.D., and Massengill, L.W., Heavy ion testing and single-event upset rate prediction considerations for a DICE flip-flop, IEEE Trans. Nucl. Sci., 2009, vol. 56, no. 6, pp. 3130–3137.

  7. 7

    Seifert, N.P., Ambrose, V., Shi, Q., Allmon, R., Recchia, C., Mukherjee, S., Nassif, N., Krause, J., Pickholtz, J., and Balasubramanian, A., On the radiation-induced soft error performance of hardened sequential elements in advanced bulk CMOS technologies, in Proceedings of IEEE International Reliability Physics Symposium,2010, pp. 188–197.

  8. 8

    Stenin, V.Ya. and Cherkasov, I.G., Memory-cell layout as a factor in the single-event-upset susceptibility of submicron DICE CMOS SRAM, Russ. Microelectron., 2011, vol. 40, no. 3, pp. 170–175.

  9. 9

    Toure, G., Hubert, G., Castellani-Coulie, K., Duzellier, S., and Portal, J.-M., Simulation of single and multi-node collection: impact on SEU occurrence in nanometric SRAM cells, IEEE Trans. Nucl. Sci., 2011, vol. 58, no. 3, pp. 862–869.

  10. 10

    Lilja, K., Bounasser M., Wen S., Wong R., Holst J., Gaspard N., Jagannathan S., Loveless D., and Bhuva B., Single event performance and layout optimization of flip-flops in a 28-nm bulk technology, IEEE Trans. Nucl. Sci., 2013, vol. 60, no. 4, pp. 2782–2788.

  11. 11

    Massengill, L.W., Bhuva, B.L., Holman, W.T., Alles, M.L., and Loveless, T.D., Technology scaling and soft reliability, in Proceedings of IEEE International Reliability Physics Symposium,2012, pp. 3.C.1.1–3.C.1.7.

  12. 12

    Gaspard, N., Jagannathan, S., Diggins, Z., McCurdy, M., Loveless, T.D., Bhuva, B.L., Massengill, L.W., Holman, W.T., Oates, T.S., Fang, Y-P., Wen, S.-J., Wong, R., Lilja, K., and Bounasser, M., Estimation of hardened flip-flop neutron soft error rates using SRAM multiple-cell upset data in bulk CMOS, in Proceedings of IEEE International Reliability Physics Symposium,2013, pp. SE.6.1–SE.6.5.

  13. 13

    Stenin, V.Ya. and Stepanov, P.V., Basic memory elements using DICE cells for fault-tolerant 28 nm CMOS RAM, Russ. Microelectron., 2015, vol. 44, no. 6, pp. 368–379.

  14. 14

    Baze, M.P., Hughlock, B., Wert, J., Tostenrude, J., Massengill, L., Amusan, O., Lacoe, R., Lilja, K., and Johnson, M., Angular dependence of single-event sensitivity in hardened flip/flop design, IEEE Trans. Nucl. Sci., 2008, vol. 55, no. 6, pp. 3295–3301.

  15. 15

    Loveless, T.D., Jagannathan, S., Reece, T., Chetia, J., Bhuva, B.L., McCurdy, M.W., Massengill, L.W., Wen, S.-J., Wong, R., and Rennie, D., Neutron- and proton-induced single event upsets for D- and DICE-flip/flop designs at a 40 nm technology node, IEEE Trans. Nucl. Sci., 2011, vol. 58, no. 3, pp. 1008–1014.

  16. 16

    Uznanski, S., Gasiot, G., Roche, P., Tavernier, C., and Autran, J.-L., Single event upset and multiple cell upset modeling in commercial bulk 65-nm CMOS SRAMs and flip-flops, IEEE Trans. Nucl. Sci., 2010, vol. 57, no. 4, pp. 1876–1883.

  17. 17

    Giot, D., Roche, P., Gasiot, G., Autran, J.-L., and Harboe-Sorensen, R., Heavy ion testing and 3D simulations of multiple cell upset in 65 nm standard SRAMs, IEEE Trans. Nucl. Sci., 2008, vol. 55, no. 4, pp. 2048–2054.

  18. 18

    Wang, T., Xiao, L., and Huang, Q., Simulation study of single event effect for different N-well and deep-N-well doping in 65 nm triple-well CMOS devices, in Proceedings of International Conference on Optoelectronics and Microelectronics,2012, pp. 505–509.

  19. 19

    Artola, L., Hubert, G., Duzellier, S., and Bezerra, F., Collected charge analysis for a new transient model by TCAD simulation in 90 nm technology, IEEE Trans. Nucl. Sci., 2010, vol. 57, no. 4, pp. 1869–1875.

  20. 20

    Katunin, Yu.V. and Stenin, V.Ya., Simulation of single event effects in STG DICE memory cells, Russ. Microelectron., 2018, vol. 47, no. 1, pp. 20–33.

  21. 21

    Katunin, Yu.V. and Stenin, V.Ya., The STG DICE cell with the decoder for reading data in steady and unsteady states for hardened SRAM, in IEEE Xplore (Conference Section, RADECS-2017), e-book, 2019, pp. 171–178.

  22. 22

    Stenin, V.Ya. and Katunin, Yu.V., Simulation the effects of single nuclear particles on STG RS triggers with transistors spacing into two groups, Russ. Microelectron., 2018, vol. 47, no. 6, pp. 407–414.

  23. 23

    Katunin, Yu.V. and Stenin, V.Ya., Logical C-element on STG DICE trigger for asynchronous digital devices resistant to single nuclear particles, Russ. Microelectron., 2019, vol. 48, no. 3, pp. 143–156.

  24. 24

    Katunin, Yu.V. and Stenin, V.Ya., The element of matching on an STG DICE cell for an upset tolerant content addressable memory, Russ. Microelectron., 2018, vol. 47, no. 2, p. 142–156.

  25. 25

    Garg, R. and Khatri, S.P., Analysis and Design of Resilient VLSI Circuits: Mitigating Soft Errors and Process Variations, New York: Springer, 2010, pp. 194–205.

  26. 26

    Nicolaidis, M., Soft Errors in Modern Electronic Systems, New York: Springer, 2011, pp. 35–37.

Download references

Author information

Correspondence to V. Ya. Stenin or Yu. V. Katunin.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stenin, V.Y., Katunin, Y.V. Modeling the Charge Collection from a Track of an Ionizing Particle in Upset Hardened CMOS Trigger Elements. Russ Microelectron 48, 381–393 (2019) doi:10.1134/S1063739719060088

Download citation

Keywords:

  • logic element
  • modeling
  • single nuclear particle
  • noise immunity
  • particle’s track
  • trigger