Russian Microelectronics

, Volume 48, Issue 3, pp 131–142 | Cite as

Multilevel Bipolar Memristor Model Considering Deviations of Switching Parameters in the Verilog-A Language

  • G. S. TeplovEmail author
  • E. S. GornevEmail author


We describe a bipolar memristor in the Verilog-A language. The proposed model concepts take into account the following parameter deviations in the memristor switching between conduction states: the variation of the conduction parameters in the highly resistive and low-resistance state, the switching threshold variations, and the variation of the number of switching cycles.


memristor simulation memristor bipolar memristor multilevel memristor Verilog-A model switching parameter deviations 



  1. 1.
    Krasnikov, G.Ya. and Orlov, O.M., Distinctive features and problems of CMOS technology for decrease in the node size to 0.18 μm or less, Nanotechnol. Russ., 2018, vol. 3, nos. 7–8, pp. 502–506.CrossRefGoogle Scholar
  2. 2.
    Lukichev, V.F. and Shikolenko, Yu.L., Modern element base of the storage devices, Nano-Mikrosist. Tekh., 2015, no. 11 (184), pp. 40–53.Google Scholar
  3. 3.
    Alekseeva, L.G., Ivanov, A.S., and Luchinin, V.V., New electronic component base. Memristor, Nano- Mikrosist. Tekh., 2016, vol. 18, no. 5, pp. 297–308.Google Scholar
  4. 4.
    Chua, L., Memristor—the missing circuit element, IEEE Trans. Circuit Theory, 1971, vol. 18, no. 5, pp. 507–519.CrossRefGoogle Scholar
  5. 5.
    Strukov, D.B. et al., The missing memristor found, Nature (London, U.K.), 2008, vol. 453, no. 7191, p. 80.Google Scholar
  6. 6.
    Maevskii, O.V., Pisarev, A.D., Busygin, A.N., et al., Logical commutator and a storage device based on memristor cells for electrical circuits of neuroprocessor, Vestn. Tyumen. Univ., Fiz.-Mat. Model., Neft’, Gaz, Energet., 2016, vol. 2, no. 4, pp. 100–111.Google Scholar
  7. 7.
    Lupo, N. et al., An approximated Verilog-A model for memristive devices, in Proceedings of the IEEE International Symposium on Circuits and Systems ISCAS, 2018, pp. 1–5.Google Scholar
  8. 8.
    Yang, Y. et al., Verilog-A based effective complementary resistive switch model for simulations and analysis, IEEE Embedded Syst. Lett., 2014, vol. 6, no. 1, pp. 12–15.CrossRefGoogle Scholar
  9. 9.
    Wang, X., Xu, B., and Chen, L., Efficient memristor model implementation for simulation and application, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2017, vol. 36, no. 7, pp. 1226–1230.CrossRefGoogle Scholar
  10. 10.
    Gornev, E.S. and Teplov, G.S., Mathematical model of a finite automaton of an abstract neuron and the networks based on it, Nano-Mikrosist. Tekh., 2018, vol. 20, no. 7, pp. 434–442.Google Scholar
  11. 11.
    Baturin, A.S., Bulakh, K.V., Grigal, I.P., Gornev, E.S., et al., Resistive switching effect in graded HfxAl1–xOy films grown by atomic layer deposition, Nano-Mikrosist. Tekh., 2013, no. 6, pp. 13–18.Google Scholar
  12. 12.
    Chuprik, A.A., Baturin, A.S., Gornev, E.S., et al., Prototype of memristor cell based on MDM structures using a variable composition dielectric film HfxAl1–xOy, Zh. Radioelektron., 2013, no. 6, p. 10.Google Scholar
  13. 13.
    Orlov, O.M., Markeev, A.M., Zenkevich, A.V., et al., Research features of FRAM and ReRAM non-volatile memory devices based on ALD processes, Elektron. Tekh., Ser. 3: Mikroelektron., 2015, vol. 4, no. 1, pp. 62–68.Google Scholar
  14. 14.
    Benderli, S. and Wey, T.A., On SPICE macromodeling of TiO2 memristors, Electron. Lett., 2009, vol. 45, no. 7, pp. 377–379.CrossRefGoogle Scholar
  15. 15.
    Emara, A.A., Aboudina, M.M., and Fahmy, H.A.H., Corrected and accurate Verilog-A for linear dopant drift model of memristors, in Proceedings of the 57th IEEE International Midwest Symposium on Circuits and Systems MWSCAS 2014, IEEE, 2014, pp. 499–502.Google Scholar
  16. 16.
    Biolek, Z., Biolek, D., and Biolkova, V., SPICE model of memristor with nonlinear dopant drift, Radioengineering, 2009, vol. 18, no. 2.Google Scholar
  17. 17.
    Joglekar, Y.N. and Wolf, S.J., The elusive memristor: properties of basic electrical circuits, Eur. J. Phys., 2009, vol. 30, no. 4, p. 661.CrossRefzbMATHGoogle Scholar
  18. 18.
    Prodromakis, T. et al., A versatile memristor model with nonlinear dopant kinetics, IEEE Trans. Electron. Dev., 2011, vol. 58, no. 9, pp. 3099–3105.CrossRefGoogle Scholar
  19. 19.
    Kvatinsky, S. et al., Models of memristors for SPICE simulations, in Proceedings of the 27th IEEE Convention of Electrical and Electronics Engineers in Israel (IEEEI), 2012, pp. 1–5.Google Scholar
  20. 20.
    Pickett, M.D. et al., Switching dynamics in titanium dioxide memristive devices, J. Appl. Phys., 2009, vol. 106, no. 7, p. 074508.CrossRefGoogle Scholar
  21. 21.
    Kvatinsky, S. et al., TEAM: threshold adaptive memristor model, IEEE Trans. Circuits Syst. I: Reg. Pap., 2013, vol. 60, no. 1, pp. 211–221.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Yakopcic, C. et al., A memristor device model, IEEE Electron Dev. Lett., 2011, vol. 32, no. 10, pp. 1436–1438.CrossRefGoogle Scholar
  23. 23.
    Zeng, G. et al., Polynominal metamodel integrated Verilog-AMS for memristor-based mixed-signal system design, in Proceedings of the 56th IEEE International Midwest Symposium on Circuits and Systems MWSCAS, 2013, IEEE, 2013, ppp. 916–919.Google Scholar
  24. 24.
    Corinto, F. and Ascoli, A., A boundary condition-based approach to the modeling of memristor nanostructures, IEEE Trans. Circuits Syst. I: Reg. Pap., 2012, vol. 59, no. 11, pp. 2713–2726.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kvatinsky, S. et al., VTEAM: a general model for voltage-controlled memristors, IEEE Trans. Circuits Syst. II: Express Briefs, 2015, vol. 62, no. 8, pp. 786–790.CrossRefGoogle Scholar
  26. 26.
    Garcia-Redondo, F. et al., SPICE compact modeling of bipolar/unipolar memristor switching governed by electrical thresholds, IEEE Trans. Circuits Syst. I: Reg. Pap., 2016, vol. 63, no. 8, pp. 1255–1264.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Garcia-Redondo, F., Lôpez-Vallejo, M., and Barrio, C.L., Advanced integration of variability and degradation in RRAM SPICE compact models, in Proceedings of the 14th IEEE International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design SMACD, 2017, pp. 1–4.Google Scholar
  28. 28.
    Hajri, B. et al., Oxide-based RRAM models for circuit designers: a comparative analysis, in Proceedings of the 12th IEEE International Conference on Design and Technology of Integrated Systems in Nanoscale Era DTIS, 2017, pp. 1–6.Google Scholar
  29. 29.
    Panda, D., Sahu, P.P., and Tseng, T.Y., A collective study on modeling and simulation of resistive random access memory, Nanoscale Res. Lett., 2018, vol. 13, no. 1, p. 8.CrossRefGoogle Scholar
  30. 30.
    Fetisova, A.I., Kirtaev, R.V., Matveev, Yu.A., et al., HFO2-based nanoscale electronic synapses in cross-bar geometry, in Proceedings of the 58th Scientific Conference of Mosc. Phys. Tech. Inst., Dolgoprudnyi, Moscow Reg., Russia, Nov. 23–28, 2015.Google Scholar
  31. 31.
    Bai, Y. et al., Study of multi-level characteristics for 3D vertical resistive switching memory, Sci. Rep., 2014, vol. 4, p. 5780.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Molecular Electronics Research Institute (AO MERI)MoscowRussia

Personalised recommendations