Russian Microelectronics

, Volume 48, Issue 2, pp 107–118 | Cite as

Studying the Thermodynamic Properties of Composite Magnetic Material Based on Anodic Alumina

  • A. I. VorobjovaEmail author
  • D. L. Shimanovich
  • O. A. Sycheva
  • T. I. Ezovitova
  • D. I. Tishkevich
  • A. V. Trykhanov


In this paper we study the thermodynamic, morphological, structural, and chemical properties of a composite material consisting of nickel nanowires (NWs) electrochemically deposited in the pores of the membrane of porous anodic aluminum oxide (PAA) by methods of differential thermal analysis (DTA), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and dispersive X-ray spectroscopy (EDX).



This work was performed under the financial support of the State Scientific and Technical Program Nanotechnologies and Nanomaterials of the Ministry of Education of the Republic of Belarus.


  1. 1.
    Mátéfi-Tempfli, S., Mátéfi-Tempfli, M., Vlad, A., et al., Nanowires and nanostructures fabrication using template methods: a step forward to real devices combining electrochemical synthesis with lithographic techniques, J. Mater. Sci.: Mater. Electron., 2009, vol. 20, no. 1, pp. S249–S254.Google Scholar
  2. 2.
    Vorobyova, A.I. and Outkina, E.A., Study of pillar microstructure formation with anodic oxides, Thin Solid Films, 1998, vol. 324, pp. 1–10.CrossRefGoogle Scholar
  3. 3.
    Lee, W. and Park, S.-J., Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures, Chem. Rev., 2014, vol. 114, pp. 7487–7556.Google Scholar
  4. 4.
    Gudkov, V.A., Vedeneev, A.S., Ryl’kov, V.V., Temirya-zeva, M.P., Kozlov, A.M., Nikolaev, S.N., Pankov, M.A., Golovanov, A.N., Semisalova, A.S., Perov, N.S., Dukhnovskii, M.P., and Bugaev, A.S., Synthesis of spatially ordered ensemble of Co nanocylinders in porous alumina matrix on surface of GaAs structures, Tech. Phys. Lett., 2013, vol. 39, no. 9, pp. 805–807.CrossRefGoogle Scholar
  5. 5.
    Brüggemann, D., Nanoporous aluminium oxide membranes as cell interfaces, J. Nanomater., 2013, vol. 2013, p. 460870.CrossRefGoogle Scholar
  6. 6.
    Law, C.S., Sylvia, G.M., Nemati, M., et al., Engineering of surface chemistry for enhanced sensitivity in nanoporous interferometric sensing platforms, Appl. Mater. Interfaces, 2017, vol. 9, no. 10, pp. 8929–8940.CrossRefGoogle Scholar
  7. 7.
    Vasiliev, A.A., Pavelko, R.G., Gogish-Klushin, S.Y., et al., Alumina MEMS platform for impulse semiconductor and IR optic gas sensors, Sens. Actuators, B, 2008, vol. 132, pp. 216–223.CrossRefGoogle Scholar
  8. 8.
    Feng, H., Elam, J.W., Libera, J.A., et al., Catalytic nanoliths, Chem. Eng. Sci., 2009, vol. 64, pp. 560–567.CrossRefGoogle Scholar
  9. 9.
    Ying, J.Y., Nanoporous systems and templates the unique self-assembly and synthesis of nanostructures, Sci. Spectra, 1999, vol. 18, pp. 56–63.Google Scholar
  10. 10.
    Li, A.P., Müller, F., and Birner, A., Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys., 1998, vol. 84, no. 11, pp. 6023–6026.CrossRefGoogle Scholar
  11. 11.
    Masuda, H. and Fukuda, K., Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science (Washington, DC, U. S.), 1995, vol. 268, pp. 1466–1468.CrossRefGoogle Scholar
  12. 12.
    Vorobjova, A.I., Prudnikova, E., Shaman, Y., et al., Specific features of the carbon nanotubes nucleation and growth in the porous alumina membrane, Adv. Mater. Sci. Appl., 2014, vol. 3, no. 2, pp. 46–52.Google Scholar
  13. 13.
    Friedman, A.L. and Menon, L., Optimal parameters for synthesis of magnetic nanowires in porous alumina templates, J. Electrochem. Soc., 2007, vol. 154, pp. E68–E70.CrossRefGoogle Scholar
  14. 14.
    Zhu, R., Zhang, H., Chen, Z., et al., Horizontally aligned single array of Co nanowires fabricated in one-dimensional nanopore array template, Electrochem. Solid-State Lett., 2008, vol. 11, no. 6, pp. K57–K60.CrossRefGoogle Scholar
  15. 15.
    Puydinger dos Santos, M.V., Velo, M., Domingos, R.D., et al., Electrodeposited nickel nanowires for magnetic-field effect transistor (MagFET), J. Integr. Circ. Syst., 2016, vol. 11, pp. 13–18.Google Scholar
  16. 16.
    Mei, Q.S. and Lu, K., Melting and superheating of crystalline solids: from bulk to nanocrystals, Prog. Mater. Sci., 2007, no. 52, pp. 1175–1262.Google Scholar
  17. 17.
    Shilyaeva, Yu.I., Bardushkin, V.V., Gavrilov, S.A., et al., Melting temperature of metal polycrystalline nanowires electrochemically deposited into the pores of anodic aluminum oxide, Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 19394–19401.CrossRefGoogle Scholar
  18. 18.
    Shilyaeva, Yu., Gavrilov, S., Dudin, A., et al., Anodic aluminium oxide templates for synthesis and study of thermal behavior of metallic nanowires, Surf. Interface Anal., 2015.
  19. 19.
    Andrievskii, R.A., Nanomaterials: concept and contemporary problems, Ross. Khim. Zh., 2002, vol. 46, no. 5, pp. 50–56.Google Scholar
  20. 20.
    Huber, T., Degischer, H.P., Lefranc, G., et al., Thermal expansion studies on aluminium-matrix composites with different reinforcement architecture of SiC particles, Compos. Sci. Technol., 2006, vol. 66, pp. 2206–2217.CrossRefGoogle Scholar
  21. 21.
    Vorob’eva, A.I., Shimanovich, D.L., and Sycheva, O.A., Studying the thermodynamic characteristics of anodic alumina, Russ. Microelectron., 2018, vol. 47, no. 1, pp. 40–49.CrossRefGoogle Scholar
  22. 22.
    Babichev, A.P., Babushkina, N.A., and Bratkovskii, A.M., Fizicheskie velichiny. Spravochnik (Physical Values, The Handbook), Moscow: Energoatomizdat, 1991.Google Scholar
  23. 23.
    Sharma, N.K., Misra, R.K., and Sharma, S., Thermal expansion behavior of Ni–Al2O3 composites with particulate and interpenetrating phase structures: an analysis using finite element method, Comput. Mater. Sci., 2014, vol. 90, pp. 130–136.CrossRefGoogle Scholar
  24. 24.
    Bruck, H.A. and Rabin, B.H., An evaluation of role of mixtures predictions of thermal expansion in powder processed Ni–Al2O3 compositor, J. Am. Ceram. Soc., 1999, vol. 82, no. 10, pp. 2927–2930.CrossRefGoogle Scholar
  25. 25.
    Dzumaliev, A.S., Nikulin, Y.V., and Filimonov, Y.A., Magnetic properties and microstructure of thin polycrystalline nickel films with (200) texture, in Proceedings of the Moscow International Symposium on Magnetism, 2011, p. 408.Google Scholar
  26. 26.
    Ryabukhin, A.G., Novoselova, E.G., and Samarin, I.I., Nickel oxidation in air to form thin films, Vestn. YuUrGU, 2005, no. 10, pp. 34–40.Google Scholar
  27. 27.
    Oxidation of Metals, Benard, J., Ed., Paris: Cauthier-Villars, 1964, vol. 1.Google Scholar
  28. 28.
    Korznikov, A.V., Korznikova, G.F., Myshlyaev, M.M., et al., Evolution of nanocrystalline Ni structure during heating, Phys. Met. Metallogr., 1997, vol. 84, no. 4, pp. 413–417.Google Scholar
  29. 29.
    Krasnoperova, Yu.G., Voronova, L.M., Degtyarev, M.V., Chashchukhina, T.I., and Resnina, N.N., Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation, Phys. Met. Metallogr., 2015, vol. 116, no. 1, pp. 79–86.CrossRefGoogle Scholar
  30. 30.
    Wang, H., Li, M., Li, X., et al., Preparation and thermal stability of nickel nanowires via self-assembly process under magnetic field, Bull. Mater. Sci., 2015, vol. 38, no. 5, pp. 1285–1289.CrossRefGoogle Scholar
  31. 31.
    Cai, Q., Zhang, J., Chen, X., Chen, Z., et al., Structural study on Ni nanowires in an anodic alumina membrane by using in situ heating extended X-ray absorption fine structure and x-ray diffraction techniques, J. Phys.: Condens. Matter., 2008, vol. 20, pp. 115–205.Google Scholar
  32. 32.
    Gleiter, H., Nanostructured materials: basic concepts and microstructure, Acta Mater., 2000, vol. 48, pp. 1–29.CrossRefGoogle Scholar
  33. 33.
    Xu, J., Chen, L., Mathewson, A., et al., Ultra-long metal nanowire arrays on solid substrate with strong bonding, Nanoscale Res. Lett., 2011, vol. 6, pp. 1–7.Google Scholar
  34. 34.
    Furneaux, R.C., Rigby, W.R., and Davidson, A.P., The formation of controlled-porosity membranes from anodically oxidized aluminum, Nature (London, U.K.), 1989, vol. 337, pp. 147–149.CrossRefGoogle Scholar
  35. 35.
    Vorobjova, A.I., Shimanovich, D.L., Yanushkevich, K.I., et al., Properties of Ni and Ni–Fe nanowires electrochemically deposited into a porous alumina template, Beilstein J. Nanotechnol., 2016, no. 7, pp. 1709–1717.Google Scholar
  36. 36.
    Vorobjova, A.I., Shimanovich, D.L., Outkina, E.A., et al., Highly ordered through-holes porous alumina membranes for nanowires fabrication, Appl. Phys. A, 2018, vol. 1, pp. 124–132.Google Scholar
  37. 37.
    Song, P., Wen, D., Guo, Z.X., et al., Oxidation investigation of nickel nanoparticles, Phys. Chem. Chem. Phys., 2008, vol. 10, pp. 5057–5065.CrossRefGoogle Scholar
  38. 38.
    Jagminas, A., Mažeika, K., Reklaitis, J., et al., Annealing effects on the transformations of Fe nanowires encapsulated in the alumina template pores, Mater. Chem. Phys., 2009, vol. 115, pp. 217–222.CrossRefGoogle Scholar
  39. 39.
    Thuvander, M., Abraham, M., Cerezo, A., et al., Thermal stability of electrodeposited nanocrystalline nickel and iron-nickel alloys, Mater. Sci. Technol., 2001, vol. 17, no. 8, pp. 961–970.CrossRefGoogle Scholar
  40. 40.
    Chang, W.-S., Yang, W., Guo, J.-M., et al., Thermal stability of Ni–Fe alloy foils continuously electrodeposited in a fluorborate bath, Open J. Metal., 2012, vol. 2, pp. 18–23. Scholar
  41. 41.
    Gorelik, S.S., Rekristallizatsiya metallov i splavov (Recrystallization of Metals and Alloys), Moscow: MISIS, 2005.Google Scholar
  42. 42.
    Cacciamani, G., Dinsdale, A., Palumbo, M., et al., The Fe–Ni system: thermodynamic modelling assisted by atomistic calculations, Intermetallics, 2011, vol. 18, no. 6, pp. 1148–1162.CrossRefGoogle Scholar
  43. 43.
    Aleshin, A.H., Kinetic constants of abnormal grain growth in nanocrystalline nickel, Phys. Solid State, 2016, vol. 58, no. 2, pp. 413–420.CrossRefGoogle Scholar
  44. 44.
    Cheung, C., Djuanda, F., Erb, U., et al., Electrodeposition of nanocrystalline Ni–Fe alloys, Nanostruct. Mater., 1995, vol. 5, no. 5, pp. 513–523.CrossRefGoogle Scholar
  45. 45.
    Dzhumaliev, A.S., Nikulin, Yu.V., and Filimonov, Yu.A., Effect of annealing temperature and rate of sputtering on the magnetic properties and microstructure of the polycrystalline nickel films with (200) texture, J. Commun. Technol. Electron., 2012, vol. 57, no. 5, pp. 498–505.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. I. Vorobjova
    • 1
    Email author
  • D. L. Shimanovich
    • 1
  • O. A. Sycheva
    • 2
  • T. I. Ezovitova
    • 2
  • D. I. Tishkevich
    • 3
  • A. V. Trykhanov
    • 3
  1. 1.Belarusian State University of Informatics and Radio ElectronicsMinskBelarus
  2. 2.Institute of General and Inorganic Chemistry, National Academy of Sciences of BelarusMinskBelarus
  3. 3.State Research and Production Association “Scientific–Practical Materials Research Centre, National Academy of Sciences of Belarus”MinskBelarus

Personalised recommendations