Russian Microelectronics

, Volume 47, Issue 2, pp 83–94 | Cite as

Generation and Concentration of Terahertz Radiation in a Microcavity with an Open Quantum Dot

Article
  • 6 Downloads

Abstract

A scheme to generate terahertz radiation by an array of quantum dots localized at the center of a semiconducting heterostructure is developed. Electrons are injected into the active part due to the source and drain Fermi energy difference induced by a dc electric field. The structure is placed inside a microcavity stimulating the electronic transition in the quantum dots accompanied by the emission of a photon to the cavity mode. This process is optimized using the filters formed by the quantum wells, which facilitate the electron density concentration in a quantum dot. The electromagnetic field radiated by the cavity in the waveguide can be used for a local effect on the charge qubits. The parameters of such a source depend on the working characteristics of the quantum dots and cavity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nielsen, M.A. and Chuang, I.L., Quantum Computation and Quantum Information, Cambrige: Cambrige Univ. Press, 2000.MATHGoogle Scholar
  2. 2.
    Kimble, H. J., The quantum internet, Nature, 2008, vol. 453, p. 1023.CrossRefGoogle Scholar
  3. 3.
    Kapale, K.T., Agarwal, G.S., and Scully, M.O., Cavity-mediated long-range interaction for fast multiqubit quantum logic operations, Phys. Rev. A, 2005, vol. 72, p. 052304.CrossRefGoogle Scholar
  4. 4.
    Tsukanov, A.V. and Kateev I.Yu., Quantum calculations on quantum dots in semiconductor microcavities. Part I, Russ. Microelectron., 2014, vol. 43, no. 5, pp. 315–327.CrossRefGoogle Scholar
  5. 5.
    Tsukanov, A.V. and Kateev I.Yu., Quantum calculations on quantum dots in semiconductor microcavities. Part II, Russ. Microelectron., 2014, vol. 43, no. 6, pp. 377–387.CrossRefGoogle Scholar
  6. 6.
    Tsukanov, A.V. and Kateev I.Yu., Quantum calculations on quantum dots in semiconductor microcavities. Part III, Russ. Microelectron., 2015, vol. 44, no. 2, pp. 61–78.CrossRefGoogle Scholar
  7. 7.
    Tsukanov, A.V., NV-centers in diamond. Part I. General information, fabrication technology, and the structure of the spectrum, Russ. Microelectron., 2012, vol. 41, no. 2, pp. 91–106.CrossRefGoogle Scholar
  8. 8.
    Tsukanov, A.V., NV-centers in diamond. Part II. Spectroscopy, spin-state identification, and quantum manipulation, Russ. Microelectron., 2012, vol. 41, no. 3, pp. 145–161.CrossRefGoogle Scholar
  9. 9.
    Tsukanov, A.V., NV centers in diamond. Part III: Quantum algorithms, scaling, and hybrid systems, Russ. Microelectron., 2013, vol. 42, no. 1, pp. 1–15.CrossRefGoogle Scholar
  10. 10.
    Tsukanov, A.V., Superconducting resonators and charge qubits: spectroscopy and quantum operations. Part I, Russ. Microelectron., 2010, vol. 39, no. 6, pp. 378–393.CrossRefGoogle Scholar
  11. 11.
    Tsukanov, A.V., Superconducting cavities and charge qubits: spectroscopy and quantum operations. Part II, Russ. Microelectron., 2011, vol. 40, no. 1, pp. 8–16.CrossRefGoogle Scholar
  12. 12.
    Tsukanov, A.V. and Kateev I.Yu., Quantum operations on charge qubits with the electrostatic control in semiconductor cavities, Russ. Microelectron., 2013, vol. 42, no. 4, pp. 197–211.CrossRefGoogle Scholar
  13. 13.
    Elesin, V.F., Kapaev, V.V., Kopaev, Yu.V., and Tsukanov, A.V., Double-well coherent laser with suppressed intersubband relaxation, JETP Lett., 1997, vol. 66, no. 11, pp. 742–747.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kulkarni, M., Cotlet, O., and Türeci, H.E., Cavitycoupled double-quantum dot at finite bias: analogy with lasers and beyond, Phys. Rev. B, 2014, vol. 90, p. 125402.CrossRefGoogle Scholar
  15. 15.
    Zibik, E.A., Grange, T., Carpenter, B.A., Porter, N.E., Ferreira, R., Bastard, G., Stehr, D., Winnerl, S., Helm, M., Liu, H.Y., Skolnick, M.S., and Wilson, L.R., Long lifetimes of quantum-dot intersublevel transitions in the terahertz range, Nat. Mater., 2009, vol. 8, p. 803.CrossRefGoogle Scholar
  16. 16.
    Kaer, P., Nielsen, T.R., Lodahl, P., Jauho, A.-P., and Mørk, J., Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED, Phys. Rev. B, 2012, vol. 86, p. 085302.CrossRefGoogle Scholar
  17. 17.
    Tsukanov, A.V. and Chekmachev, V.G., Simulation of the spectroscopic response and electron dynamics in a double quantum dot, Russ. Microelectron., 2016, vol. 45, no. 1, pp. 1–10.CrossRefGoogle Scholar
  18. 18.
    Purcell, E.M., Spontaneous emission probabilities at radio frequencies, Phys. Rev., 1946, vol. 69, p. 681.CrossRefGoogle Scholar
  19. 19.
    Khasraghi, A.M., Shojaei, S., Vala, A.S., and Kalafi, M., Coupling effects in a photonic crystal microcavity with embedded semiconductor quantum dot, Physica E, 2013, vol. 47, p. 17.CrossRefGoogle Scholar
  20. 20.
    Gorodetskii, M.L., Opticheskie mikrorezonatory s gigantskoi dobrotnost’yu (Optic Microresonators with Giant Quality Factor), Moscow: Fizmatlit, 2011.Google Scholar
  21. 21.
    Rosenblit, M., Horak, P., Helsby, S., and Folman, R., Single-atom detection using whispering-gallery modes of microdisk resonators, Phys. Rev. A, 2004, vol. 70, p. 053808.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudny, Moscow oblastRussia

Personalised recommendations