Atomic Layer Deposition of Aluminum Nitride Using Tris(diethylamido)aluminum and Hydrazine or Ammonia
- 20 Downloads
Abstract
Aluminum nitride (AlN x ) films were obtained by atomic layer deposition (ALD) using tris(diethylamido) aluminum(III) (TDEAA) and hydrazine (N2H4) or ammonia (NH3). The quartz crystal microbalance (QCM) data showed that the surface reactions of TDEAA and N2H4 (or NH3) at temperatures from 150 to 225°C were self-limiting. The rates of deposition of the nitride film at 200°C for systems with N2H4 and NH3 coincided: ~1.1 Å/cycle. The ALD AlN films obtained at 200°C using hydrazine had higher density (2.36 g/cm3, 72.4% of bulk density) than those obtained with ammonia (2.22 g/cm3, 68%). The elemental analysis of the film deposited using TDEAA/N2H4 at 200°C showed the presence of carbon (~1.4 at %), oxygen (~3.2 at %), and hydrogen (22.6 at %) impurities. The N/Al atomic concentration ratio was ~1.3. The residual impurity content in the case of N2H4 was lower than for NH3. In general, it was confirmed that hydrazine has a more preferable surface thermochemistry than ammonia.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Slack, G.A., et al., The intrinsic thermal-conductivity of AlN, J. Phys. Chem. Solids, 1987, vol. 48, no. 7, pp. 641–647.CrossRefGoogle Scholar
- 2.Goldberg, Y., Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe, Levinshtein, M.E., Rumyantsev, S.L., and Shur, M.S., New York: Wiley, 2001.Google Scholar
- 3.Meng, W.J., Properties of Group III Nitrides, No. 11 of EMIS Datareviews Series, London: Edgar J.H., 1994.Google Scholar
- 4.Aita, C.R., Kubiak, C.J.G., and Shih, F.Y.H., Optical behavior near the fundamental absorption-edge of sputter-deposited microcrystalline aluminum nitride, J. Appl. Phys., 1989, vol. 66, no. 9, pp. 4360–4363.CrossRefGoogle Scholar
- 5.Edwards, J. et al., Space charge conduction and electrical behaviour of aluminium nitride single crystals, Solid State Commun., 1965, vol. 3, no. 5, pp. 99–100.CrossRefGoogle Scholar
- 6.Usman, M. et al., Toward the understanding of stacked Al-based high-k dielectrics for passivation of 4H-SiC devices, J. Electrochem. Soc., 2011, vol. 158, no. 1, pp. H75–H79.MathSciNetCrossRefGoogle Scholar
- 7.Bosund, M. et al., GaAs surface passivation by plasmaenhanced atomic-layer-deposited aluminum nitride, Appl. Surf. Sci., 2010, vol. 256, no. 24, pp. 7434–7437.CrossRefGoogle Scholar
- 8.Kueck, D. et al., AlN as passivation for surface channel FETs on H-terminated diamond, Diamond Relat. Mater., 2010, vol. 19, nos. 7–9, pp. 932–935.CrossRefGoogle Scholar
- 9.Luc, Q.H. et al., Plasma enhanced atomic layer deposition passivated HfO2/AlN/In0.53Ga0.47As MOSCAPs with sub-nanometer equivalent oxide thickness and low interface trap density, IEEE Electron Dev. Lett., 2015, vol. 36, no. 12, pp. 1277–1280.CrossRefGoogle Scholar
- 10.Aissa, K.A. et al., AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering for SAW applications, J. Phys. D: Appl. Phys., 2015, vol. 48, no. 14.Google Scholar
- 11.Yusoff, M.Z.M. et al., Plasma-assisted MBE growth of AlN/GaN/AlN heterostructures on Si(111) substrate, Superlatt. Microstruct., 2013, vol. 60, pp. 500–507.CrossRefGoogle Scholar
- 12.Brubaker, M.D. et al., Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy, J. Appl. Phys., 2011, vol. 110, no. 5.Google Scholar
- 13.Hoffman, D.M. et al., Chemical vapor deposition of aluminum and gallium nitride thin films from metalorganic precursors, J. Vacuum Sci. Technol. A, 1996, vol. 14, no. 2, pp. 306–311.CrossRefGoogle Scholar
- 14.Khan, M.A. et al., Low-pressure metalorganic chemical vapor-deposition of AlN over sapphire substrates, Appl. Phys. Lett., 1992, vol. 61, no. 21, pp. 2539–2541.MathSciNetCrossRefGoogle Scholar
- 15.Interrante, L.V. et al., Preparation and properties of aluminum nitride films using an organometallic precursor, J. Electrochem. Soc., 1989, vol. 136, no. 2, pp. 472–478.CrossRefGoogle Scholar
- 16.Gordon, R.G., Riaz, U., and Hoffman, D.M., Chemical vapor-deposition of aluminum nitride thin-films, J. Mater. Res., 1992, vol. 7, no. 7, pp. 1679–1684.CrossRefGoogle Scholar
- 17.Fathimulla, A. and Lakhani, A.A., Reactively Rf magnetron sputtered ain films as gate dielectric, J. Appl. Phys., 1983, vol. 54, no. 8, pp. 4586–4589.CrossRefGoogle Scholar
- 18.Mirpuri, C. et al., Low-temperature plasma-assisted growth of optically transparent, highly oriented nanocrystalline AlN, J. Appl. Phys., 2007, vol. 101, no. 2.Google Scholar
- 19.Rosenberger, L. et al., XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy, Surf. Interface Anal., 2008, vol. 40, no. 9, pp. 1254–1261.CrossRefGoogle Scholar
- 20.Gacevic, Z. et al., Internal quantum efficiency of IIInitride quantum dot superlattices grown by plasmaassisted molecular-beam epitaxy, J. Appl. Phys., 2011, vol. 109, no. 10.Google Scholar
- 21.George, S.M., Atomic layer deposition: an overview, Chem. Rev., 2010, vol. 110, no. 1, pp. 111–131.CrossRefGoogle Scholar
- 22.Ruhela, D. et al., Low temperature deposition of AlN films by an alternate supply of trimethyl aluminum and ammonia, Chem. Vapor Deposit., 1996, vol. 2, no. 6, pp. 277–283.CrossRefGoogle Scholar
- 23.Mayer, T.M., Rogers, J.W., and Michalske, T.A., Mechanism of nucleation and atomic layer growth of AlN on Si, Chem. Mater., 1991, vol. 3, no. 4, pp. 641–646.CrossRefGoogle Scholar
- 24.Liu, H., Bertolet, D.C., and Rogers, J.W., Reactions of trimethylaluminum and ammonia on alumina at 600-K, surface chemical aspects of AlN thin-film growth, Surf. Sci., 1995, vol. 340, nos. 1–2, pp. 88–100.CrossRefGoogle Scholar
- 25.Bui, H.V. et al., Self-limiting growth and thickness-and temperature-dependence of optical constants of ALD AlN thin films, ECS J. Solid State Sci. Technol., 2014, vol. 3, no. 4, pp. P101–P106.CrossRefGoogle Scholar
- 26.Liu, X.Y. et al., Atomic layer deposition of aluminum nitride thin films from trimethyl aluminum (TMA) and ammonia, in Integration of Advanced Micro-and Nanoeletronic Devices—Critical Issues and Solutions, Proceedings of the Symposia, San Francisco, CA, April 13–16, 2004, MRS Symp. Proc., 2004, vol. 811, pp. 11–16.Google Scholar
- 27.Elers, K.E. et al., Atomic layer epitaxy growth of AlN thin-films, J. Phys. IV, 1995, vol. 5, no. C5, pp. 1021–1027.Google Scholar
- 28.Jokinen, J. et al., Analysis of AlN thin films by combining TOF-ERDA and NRB techniques, Thin Solid Films, 1996, vol. 289, nos. 1–2, pp. 159–165.CrossRefGoogle Scholar
- 29.Puurunen, R.L. et al., Successive reactions of gaseous trimethylaluminium and ammonia on porous alumina, Phys. Chem. Chem. Phys., 2001, vol. 3, no. 6, pp. 1093–1102.CrossRefGoogle Scholar
- 30.Alevli, M., Ozgit, C., and Donmez, I., The influence of growth temperature on the properties of AlN films grown by atomic layer deposition, Acta Phys. Polon. A, 2011, vol. 120, no. 6A, pp. A58–A60.CrossRefGoogle Scholar
- 31.Lee, Y.J. and Kang, S.W., Growth of aluminum nitride thin films prepared by plasma-enhanced atomic layer deposition, Thin Solid Films, 2004, vol. 446, no. 2, pp. 227–231.CrossRefGoogle Scholar
- 32.Lee, Y.J., Formation of aluminum nitride thin films as gate dielectrics on Si(100), J. Cryst. Growth, 2004, vol. 266, no. 4, pp. 568–572.CrossRefGoogle Scholar
- 33.Ozgit, C. et al., Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition, Thin Solid Films, 2012, vol. 520, no. 7, pp. 2750–2755.CrossRefGoogle Scholar
- 34.Ozgit-Akgun, C. et al., Hollow cathode plasmaassisted atomic layer deposition of crystalline AlN, GaN and AlxGa1–xN thin films at low temperatures, J. Mater. Chem. C, 2014, vol. 2, no. 12, pp. 2123–2136.Google Scholar
- 35.Alevli, M. et al., Structural properties of AlN films deposited by plasma-enhanced atomic layer deposition at different growth temperatures, Phys. Status Solidi A, 2012, vol. 209, no. 2, pp. 266–271.CrossRefGoogle Scholar
- 36.Goerke, S. et al., Atomic layer deposition of AlN for thin membranes using trimethylaluminum and H-2/N-2 plasma, Appl. Surf. Sci., 2015, vol. 338, pp. 35–41.CrossRefGoogle Scholar
- 37.Alevli, M., et al., The influence of N-2/H-2 and ammonia N source materials on optical and structural properties of AlN films grown by plasma enhanced atomic layer deposition, J. Cryst. Growth, 2011, vol. 335, no. 1, pp. 51–57.CrossRefGoogle Scholar
- 38.Motamedi, P. and Cadien, K., Structural and optical characterization of low-temperature ALD crystalline AlN, J. Cryst. Growth, 2015, vol. 421, pp. 45–52.CrossRefGoogle Scholar
- 39.Profijt, H.B. et al., Plasma-assisted atomic layer deposition: basics, opportunities, and challenges, J. Vacuum Sci. Technol. A, 2011, vol. 29, no. 5.Google Scholar
- 40.Kim, K.H. et al., Atomic layer deposition of insulating nitride interfacial layers for germanium metal oxide semiconductor field effect transistors with high-kappa oxide/tungsten nitride gate stacks, Appl. Phys. Lett., 2007, vol. 90, no. 21.Google Scholar
- 41.Liu, G. et al., Atomic layer deposition of AlN with tris(dimethylamido)aluminum and NH3, in Proceedings of the 7th Symposium on Atomic Layer Deposition Applications, Boston, MA, Oct. 10–12, 2011, ECS Trans., 2011, vol. 41, no. 2, pp. 219–225.Google Scholar
- 42.Burton, B.B., Lavoie, A.R., and George, S.M., Tantalum nitride atomic layer deposition using (tert-butylimido) tris(diethylamido) tantalum and hydrazine, J. Electrochem. Soc., 2008, vol. 155, no. 7, pp. D508–D516.CrossRefGoogle Scholar
- 43.Gaskill, D.K., Bottka, N., and Lin, M.C., OMVPE of GaN and AlN films by metal alkyls and hydrazine, J. Cryst. Growth, 1986, vol. 77, nos. 1–3, pp. 418–423.CrossRefGoogle Scholar
- 44.Yun, J.Y., Park, M.Y., and Rhee, S.W., Comparison of tetrakis(dimethylamido)titanium and tetrakis(diethylamido) titanium as precursors for metallorganic chemical vapor deposition of titanium nitride, J. Electrochem. Soc., 1999, vol. 146, no. 5, pp. 1804–1808.CrossRefGoogle Scholar
- 45.Schmidt, E.W., Hydrazine and Its Derivatives, Preparation, Properties, Applications, New York: Wiley, 2001.Google Scholar
- 46.Elam, J.W., Groner, M.D., and George, S.M., Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition, Rev. Sci. Instrum., 2002, vol. 73, no. 8, pp. 2981–2987.CrossRefGoogle Scholar
- 47.Neumayer, D.A. and Ekerdt, J.G., Growth of group III nitrides. A review of precursors and techniques, Chem. Mater., 1996, vol. 8, no. 1, p. 9–25.CrossRefGoogle Scholar
- 48.Rocklein, M.N. and George, S.M., Temperatureinduced apparent mass changes observed during quartz crystal microbalance measurements of atomic layer deposition, Anal. Chem., 2003, vol. 75, no. 19, pp. 4975–4982.CrossRefGoogle Scholar
- 49.Takahashi, Y. et al., Low-temperature deposition of a refractory aluminum compound by the thermaldecomposition of aluminum dialkylamides, Surf. Sci., 1979, vol. 86, pp. 238–245.CrossRefGoogle Scholar
- 50.Holtz, M. et al., Preparation of optoelectronic devices based on AlN/AlGaN superlattices, in Progress in Semiconductors II, Electronic and Optoelectronic Applications, MRS Symp. Proc., 2003, vol. 744, pp. 621–626.Google Scholar
- 51.Bertolet, D.C., Liu, H., and Rogers, J.W., Mechanistics of early-stage growth of AlN on Alumina. 2. TmAl and NH3, Chem. Mater., 1993, vol. 5, no. 12, pp. 1814–1818.CrossRefGoogle Scholar
- 52.Buttera, S.C., Mandia, D.J., and Barry, S.T., Tris(dimethylamido) aluminum(III): an overlooked atomic layer deposition precursor, J. Vacuum Sci. Technol. A, 2017, vol. 35, no. 1.Google Scholar
- 53.Perros, A.P. et al., Influence of plasma chemistry on impurity incorporation in AlN prepared by plasma enhanced atomic layer deposition, J. Phys. D: Appl. Phys., 2013, vol. 46, no. 50.Google Scholar
- 54.Bosund, M. et al., Properties of AlN grown by plasma enhanced atomic layer deposition, Appl. Surf. Sci., 2011, vol. 257, no. 17, pp. 7827–7830.CrossRefGoogle Scholar
- 55.Kim, K.H., Kwak, N.W., and Lee, S.H., Fabrication and properties of AlN film on GaN substrate by using remote plasma atomic layer deposition method, Electron. Mater. Lett., 2009, vol. 5, no. 2, pp. 83–86.CrossRefGoogle Scholar
- 56.Broas, M. et al., Structural and chemical analysis of annealed plasma-enhanced atomic layer deposition aluminum nitride films, J. Vacuum Sci. Technol. A, 2016, vol. 34, no. 4.Google Scholar
- 57.The CRC Handbook of Chemistry and Physics, Lide, D.R., Ed., 88th ed., Gaithersburg, MD: Natl. Inst. Standards Technol., 2007, p. 2640.Google Scholar
- 58.Abdulagatov, A.I. et al., Atomic layer deposition of AlN and AlON with tris(dimethylamido)aluminum, NH3 and H2O, 2017, in preparation.Google Scholar
- 59.Nepal, N. et al., Epitaxial growth of AlN films via plasma-assisted atomic layer epitaxy, Appl. Phys. Lett., 2013, vol. 103, no. 8.Google Scholar
- 60.Ozgit-Akgun, C., Donmez, I., and Biyikli, N., Plasmaenhanced atomic layer deposition of III-nitride thin films, in Proceedings of the 9th Symposium on Atomic Layer Deposition Applications, ECS Trans., 2013, vol. 58, no. 10, pp. 289–297.CrossRefGoogle Scholar
- 61.Kelly, R., Attempt to understand preferential sputtering, Nucl. Instrum. Methods Phys. Res., 1978, vol. 149, nos. 1–3, pp. 553–558.CrossRefGoogle Scholar
- 62.Sigmund, P., Mechanisms and theory of physical sputtering by particle impact, Nucl. Instrum. Methods Phys. Res. B, 1987, vol. 27, no. 1, pp. 1–20.CrossRefGoogle Scholar
- 63.Liu, H.N., Bertolet, D.C., and Rogers, J.W., The surface-chemistry of aluminum nitride MOCVD on alumina using trimethylaluminum and ammonia as precursors, Surf. Sci., 1994, vol. 320, nos. 1–2, pp. 145–160.CrossRefGoogle Scholar
- 64.Fonash, S.J., An overview of dry etching damage and contamination effects, J. Electrochem. Soc., 1990, vol. 137, no. 12, pp. 3885–3892.CrossRefGoogle Scholar
- 65.Soto, C., Boiadjiev, V., and Tysoe, W.T., Spectroscopic study of AlN film formation by the sequential reaction of ammonia and trimethylaluminum on alumina, Chem. Mater., 1996, vol. 8, no. 9, pp. 2359–2365.CrossRefGoogle Scholar
- 66.Hoffman, D.M., Chemical-vapor-deposition of nitride thin-films, Polyhedron, 1994, vol. 13, no. 8, pp. 1169–1179.CrossRefGoogle Scholar
- 67.Cho, M.H. et al., Enhancement of the chemical stability of hydrogenated aluminum nitride thin films by nitrogen plasma treatment, Electrochem. Solid State Lett., 2001, vol. 4, no. 2, pp. F7–F9.CrossRefGoogle Scholar
- 68.Shih, H.Y. et al., Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing, Sci. Rep., 2017, vol. 7, p. 39717.CrossRefGoogle Scholar