Advertisement

Russian Journal of Marine Biology

, Volume 45, Issue 4, pp 283–291 | Cite as

The Influence of Secretory Products of Morula Cells on Phagocytes of the Holothurian Eupentacta fraudatrix (Djakonov et Baranova, 1958) (Sclerodactylidae: Dendrochirotida)

  • O. A. UlanovaEmail author
  • L. S. Dolmatova
Article
  • 19 Downloads

Abstract

The influence of humoral products of morula cells on apoptosis, the concentration of cytokinin-like compounds, and expression of cell-surface receptors specific to plant lectins from Arachis hypogaea, Glycine max, and concanavalin A (Con A) were studied in two types of phagocytes (P1 and P2) of the Far Eastern sea cucumber Eupentacta fraudatrix (Djakonov et Baranova, 1958). Our data show that morula cell supernatant reduced the level of apoptosis and concentration of interleukin-1α-like factors (IL-1α-LF) in P1 phagocytes, while it increased them in P2 phagocytes. We hypothesize that an increase in IL-1α-LF concentration stimulates apoptosis in E. fraudatrix P2 cells under the effect of treatment with morula cell supernatant. Moreover, opposite changes in apoptosis levels in P1 and P2 phagocytes in response to morula cell supernatant correlate with the expression of receptors of different types: N-acetyl-D-galactosamine- and β-D-galactose-containing receptors in P1 phagocytes and α-D-mannose-containing receptors in P2 phagocytes. Taken together, our results support the idea of differential roles of P1 and P2 phagocytes in the holothurian immune response. The study suggests that the differences in the binding of lectins to P1 and P2 cell-surface receptors is a distinctive feature and can be used in phenotyping of these immunocytes.

Keywords:

cell interaction phagocytes morula cells holothurian immunity apoptosis lectins 

Notes

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

REFERENCES

  1. 1.
    Besednova, N.N., Marine hydrobionts – potential sources of drugs, Zdorov’e, Med. Ekol., Nauka, 2014, no. 3(57), pp. 4–10.Google Scholar
  2. 2.
    Dolmatova, L.S., Eliseikina, M.G., and Romashina, V.V., Antioxidant enzymatic activity of coelomocytes of the Far East sea cucumber Eupentacta fraudatrix, J. Evol. Biochem. Physiol., 2004, vol. 40, no. 2, pp. 126–135.CrossRefGoogle Scholar
  3. 3.
    Dolmatova, L.S., Zaika, O.A., Nedashkovskaya, E.P., and Timchenko, N.F., Studying mechanisms of apoptosis-modulating activity of thermoresistant toxin Yersinia pseudotuberculosis and corrective effect of Far-Eastern holothurians-derived extract in rat neutrophils in vitro, Tikhookean. Med. Zh., 2010, no. 3(41), pp. 76–80.Google Scholar
  4. 4.
    Dolmatova, L.S., Shitkova, O.A., Dolmatov, I.Yu., and Timchenko, N.F., Thermostable lethal toxin of Yersinia pseudotuberculosis induces apoptosis and inhibits expression receptors of holothuria immunocytes to lectins, Zh. Mikrobiol., Epidemiol. Immunobiol., 2006, suppl. 3, pp. 23–28.Google Scholar
  5. 5.
    Dolmatova, L.S. and Ulanova, O.A., Variations in antioxidant enzyme activities of phagocytes and morular cells of the holothurian Eupentacta fraudatrix during cell interaction and their modulation with dexamethasone, Fundam. Issled.: Biol. Nauki, 2014, no. 5(2), pp. 276–282.Google Scholar
  6. 6.
    Dolmatova, L.S., Ulanova, O.A., Bynina, M.P., and Timchenko, N.F., Thermostable toxin Yersinia pseudotuberculosis induces opposite variations in the levels of markers of functional activities of the two types of phagocytes in the holothurian Eupentacta fraudatrix, Zdorov’e, Med. Ekol., Nauka, 2017, no. 3(70), pp. 108–111.Google Scholar
  7. 7.
    Zaporozhets, T.S., Ivanushko, L.A., Zvjagintseva, T.N., et al., Induced cytokine activity with biopolimers of marine hydrobionts, Med. Immunol., 2004, vol. 6, nos. 1–2, pp. 89–96.Google Scholar
  8. 8.
    Kudryavtsev, I.V., D’yachkov, I.S., Kazakov, A.A., et al., Cellular responses of congenital immunity in the starfish Asterias rubens, J. Evol. Biochem. Physiol., 2005, vol. 41, no. 2, pp. 134–142.CrossRefGoogle Scholar
  9. 9.
    Odintsova, N.A., Osnovy kul’tivirovaniya kletok morskikh bespozvonochnykh (Bases of Cultivation of Marine Invertebrate Cells), Vladivostok: Dal’nauka, 2001.Google Scholar
  10. 10.
    Pavlovskaya, N.E. and Gagarina, I.N., The physiological properties of plant lectins as a prerequisite for their application in biotechnology, Khim. Rastit. Syr’ya, 2017, no. 1, pp. 21–35.Google Scholar
  11. 11.
    Petrova, I.Yu., Bulgakov, A.A., Nazarenko, E.L., et al., Mannan-binding lectins in the coelomic fluid of various species of Far Eastern echinoderms, Russ. J. Mar. Biol., 2009, vol. 35, no. 2, pp. 171–177.CrossRefGoogle Scholar
  12. 12.
    Rapoport, E.M., Pochechueva, T.V., Kurmyshkina, O.V., et al., Solid-phase assays for study of carbohydrate specificity of galectins, Biochemistry (Moscow), 2010, vol. 75, no. 3, pp. 310–319.PubMedGoogle Scholar
  13. 13.
    Sukhachev, A.N., Kudryavtsev, I.V., Nikolaev, K.E., et al., Influence of lectins of various carbohydrate specificity on hemolytic activity of hemocytes in the mussel Mytilus edulis, in Mater. XXVIII Mezhdunar. Konf. “Biologicheskie resursy Belogo morya i vnutrennikh vodoemov Evropeiskogo Severa”, 58 oktyabrya 2009 g. (Proc. XXVIII Int. Conf. “Biological Resources of the White Sea and Inland Waters of the European North”, October 5–8, 2009), Petrozavodsk: Karel’skii Nauchn. Tsentr, Ross. Akad. Nauk, 2009, pp. 538–542.Google Scholar
  14. 14.
    Chernikov, O.V., Chikalovets, I.V., Molchanova, V.I., and Lukyanov, P.A., Biological activity of lectins of marine hydrobionts, Vestn. Dal’nevost. Otd., Ross. Akad. Nauk, 2007, no. 6, pp. 131–135.Google Scholar
  15. 15.
    Chechina, O.E., Biktasova, A.K., Sazonova, E.V., et al., Role of cytokines in the redox-dependent regulation of apoptosis, Byull. Sib. Med., 2009, vol. 8, no. 2, pp. 67–72.Google Scholar
  16. 16.
    Ballarin, L., Franchini, A., Ottaviani, E., and Sabbadin, A., Morula cells as the major immunomodulatory hemocytes in ascidians: evidences from the colonial species Botryllus schlosseri, Biol. Bull., 2001, vol. 201, pp. 59–64.CrossRefPubMedGoogle Scholar
  17. 17.
    Belogortseva, N.I., Molchanova, V.I., Kurika, A.V., et al., Isolation and characterization of new GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus, Comp. Biochem. Physiol., Part C: Pharmacol., Toxicol. Endocrinol., 1998, vol. 119, no. 1, pp. 45–50.Google Scholar
  18. 18.
    Bradford, M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.CrossRefPubMedGoogle Scholar
  19. 19.
    Chia, F. and Xing, J., Echinoderm coelomocytes, Zool. Stud., 1996, vol. 35, no. 4, pp. 231–254.Google Scholar
  20. 20.
    Liu, B., Min, M.-W., and Bao, J.-K., Induction of apoptosis by Concanavalin A and its molecular mechanism in cancer cells, Autophagy, 2009, vol. 5, pp. 432–433.CrossRefPubMedGoogle Scholar
  21. 21.
    McAllister, C.S., Lakhdari, O., Pineton de Chambrun G., et al., TLR3, TRIF, and caspase 8 determine double-stranded RNA-induced epithelial cell death and survival in vivo, J. Immunol., 2012, vol. 190, pp. 418–427.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    McKenzie, A.N. and Preston, T.M., Functional studies on Calliphora vomitoria haemocyte subpopulations defined by lectin staining and density centrifugation, Dev. Comp. Immunol., 1992, vol. 16, pp. 19–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Molchanova, V., Chikalovets, I., Li, W., et al., New GlcNAc/GalNAc-specific lectin from the ascidian Didemnum ternatanum, Biochim. Biophys. Acta, Gen. Subj., 2005, vol. 1723, pp. 82–90.CrossRefGoogle Scholar
  24. 24.
    Pollack, A. and Ciancio, G., Cell cycle phase-specific analysis of cell viability using Hoechst 33342 and propidium iodide after ethanol preservation, Methods Cell Biol., 1990, vol. 33, pp. 19–24.CrossRefPubMedGoogle Scholar
  25. 25.
    Seco-Rovira, V., Beltrán-Frutos, E., Ferrer, C., et al., Lectin histochemistry as a tool to identify apoptotic cells in the seminiferous epithelium of Syrian hamster (Mesocricetus auratus) subjected to short photoperiod, Reprod. Domest. Anim., 2013, vol. 48, no. 6, pp. 974–983.CrossRefPubMedGoogle Scholar
  26. 26.
    Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., et al., Macrophage plasticity, polarization, and function in health and disease, J. Cell. Physiol., 2018, vol. 233, pp. 6425–6440.CrossRefPubMedGoogle Scholar
  27. 27.
    Wootton, E.C., Dyrynda, E.A., and Ratcliffe, N.A., Bivalve immunity: comparisons between the marine mussel (Mytilus edulis), the edible cockle (Cerastoderma edule) and the razor-shell (Ensis siliqua), Fish Shellfish Immunol., 2003, vol. 15, pp. 195–210.CrossRefPubMedGoogle Scholar
  28. 28.
    Zaika, O.A. and Dolmatova, L.S., Cooperative apoptosis of coelomocytes of the holothurian Eupentacta fraudatrix and its modulation by dexamethasone, Adv. Biosci. Biotechnol., 2013, vol. 4, pp. 908–917.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Il’ichev Pacific Oceanological Institute, Far East BranchVladivostokRussia

Personalised recommendations