Advertisement

Russian Journal of Marine Biology

, Volume 45, Issue 4, pp 292–301 | Cite as

The Sperm Ultrastructure and Some Reproductive Characteristics of the Chemosymbiotic Bivalve Calyptogena pacifica Dall, 1891 (Vesicomyidae: Pliocardiinae)

  • A. L. DrozdovEmail author
  • E. M. Krylova
  • A. A. Kudryavtsev
  • S. V. Galkin
  • S. A. Tyurin
Article
  • 27 Downloads

Abstract

Pliocardiines (Bivalvia: Vesicomyidae: Pliocardiinae) are a chemosymbiotrophic group of bivalve mollusks that are obligate for reducing environments. These mollusks house endosymbiotic thioautotrophic bacteria in their gills, which provide nutrition for the host. The ultrastructure of spermatozoa and the state of the gonads in the pliocardiine bivalve Calyptogena pacifica in June 2016 were studied. Material was collected in the Bering Sea on the slopes of the Piip’s Volcano at a depth of 466 m. The condition of the gonads indicated a pre-spawning state. Active processes of spermatogenesis and oogenesis were noted in the gonads. The mature spermatozoon has an elongated bullet-shaped head with an average length of 4 ± 0.2 μm from the tip of the acrosome to the base of the mid-piece. The mid-piece was formed by a complex of four spherical mitochondria with a diameter of approximately 0.7 μm. An electron dense material of a lipid nature was observed in the distal region of the mid-piece of the sperm. C.pacifica mature eggs are approximately 200 μm in diameter. The results are discussed in the context of the available data on the morphology of pliocardiine gametes.

Keywords:

reproduction vesicomyids chemosymbiosis-based communities gonads gametogenesis spermatozoa Piip’s Volcano northwestern Pacific 

Notes

ACKNOWLEDGMENTS

The authors are grateful to the expedition leader V.V. Ivin, master V.B. Ptushkin, the crew of the R/V Akademik Lavrentyev, as well as to V.A. Denisov and the crew of technicians of the ROV Comanche 18 for their expert help. We are deeply grateful to Yoshihiro Fujiwara (JAMSTEC, Japan), who sent us TEM images of Phreagena soyoae spermatozoa.

FUNDING

This research was performed within the framework of the state assignment project (no. 0149-2019-0009). E.M. Krylova (comparative analysis of reproductive characteristics of pliocardiines) and S.V. Galkin (collection of material) were supported by the Russian Foundation for Basic Research (project no. 18-05-60228).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

REFERENCES

  1. 1.
    Bakeeva, L.E. and Chentsov, Yu.S., Mitochondrial reticulum: structure and some functional properties, Itogi Nauki Tekh., Ser.: Obshch. Probl. Biol., 1989, vol. 9.Google Scholar
  2. 2.
    Bakeeva, L.E., Chentsov, Yu.S., and Skulachev, V.P., Intermitochondrial contacts of cardiomyocytes, Tsitologiya, 1982, vol. 245, pp. 161–166.Google Scholar
  3. 3.
    Danilin, D.D., Bivalves as potential indicators of areas of hydrothermal activity, in Materialy konferentsii, posvyashchennoi Dnyu vulkanologa (Proc. Conf. Dedicated to the Volcanologist’s Day), Petropavlovsk-Kamchatsky: Inst. Vulkanol. Seismol., Dal’nevost. Otd. Ross. Akad. Nauk, 2013, pp. 291–294.Google Scholar
  4. 4.
    Drozdov, A.L. and Vinnikova, V.V., Morphology of gametes in sea urchins from Peter the Great Bay, Sea of Japan, Russ. J. Dev. Biol., 2010, vol. 41, no. 1, pp. 37–45.CrossRefGoogle Scholar
  5. 5.
    Drozdov, A.L. and Ivankov, V.N., Morfologiya gamet zhivotnykh (Morphology of Gametes in Animals), Moscow: Kruglyi God, 2000.Google Scholar
  6. 6.
    Drozdov, A.L. and Kasyanov, V.L., Size and shape of gametes in marine bivalve mollusks, Biol. Morya, 1985, no. 4, pp. 33–40.Google Scholar
  7. 7.
    Mashansky, V.F., Ozirskaya, E.V., Tumanova, N.L., and Drozdov, A.L., Intermitochondrial contacts in the telencephalon neurons of the lizard Ophisaurus apodus, Tsitologiya, 1984, vol. 26, no. 6, pp. 740–743.Google Scholar
  8. 8.
    Pashchenko, S.V. and Drozdov, A.L., Ultrastructure of gametes and acrosomal reaction of sperm in the bivalve Glycymeris yessoensis, Tsitologiya, 1991, vol. 33, no. 7, pp. 20–24.Google Scholar
  9. 9.
    Sagalevich, A.M., Torokhov, P.V., Matveenkov, V.V., et al., Hydrothermal manifestations at Piip’s submarine volcano, Bering Sea, Izv. Ross. Akad. Nauk, Ser. Geol., 1992, no. 9, pp. 104–114.Google Scholar
  10. 10.
    Audzijonyte, A., Krylova, E.M., Sahling, H., and Vrijenhoek, R.C., Molecular taxonomy reveals broad trans-oceanic distributions and high species diversity of deep-sea clams (Bivalvia: Vesicomyidae: Pliocardiinae) in chemosynthetic environments, Syst. Biodiversity, 2012, vol. 10, pp. 403–415.CrossRefGoogle Scholar
  11. 11.
    Barry, J.P. and Kochevar, R.E., A tale of two clams: differing chemosynthetic life styles among vesicomyids in Monterey Bay cold seeps, Cah. Biol. Mar., 1998, vol. 39, pp. 329–331.Google Scholar
  12. 12.
    Beninger, P. and Le Pennec, M., Reproductive characteristics of a primitive bivalve from a deep-sea reducing environment: giant gametes and their significance in Acharax alinae (Cryptodonta: Solemyidae), Mar. Ecol.: Prog. Ser., 1997, vol. 157, pp. 195–206.CrossRefGoogle Scholar
  13. 13.
    Berg, C.J., Reproductive strategies of mollusks from abyssal hydrothermal vent communities, Bull. Biol. Soc. Wash., 1985, vol. 6, pp. 185–197.Google Scholar
  14. 14.
    Bieler, R., Mikkelsen, P.M., Collins, T.M., et al., Investigating the Bivalve Tree of Life – an exemplar-based approach combining molecular and novel morphological characters, Invertebr. Syst., 2014, vol. 28, pp. 32–115.CrossRefGoogle Scholar
  15. 15.
    Boss, K.J. and Turner, R.D., The giant white clam from the Galapagos Rift, Calyptogena magnifica species novum, Malacologia, 1980, vol. 20, pp. 161–194.Google Scholar
  16. 16.
    Coan, E.V., Scott, P.V., and Bernard, F.R., Bivalve Seashells of Western North America: Marine Bivalve Mollusks from Arctic Alaska to Baja California, Santa Barbara Museum of Natural History Monographs, vol. 2: Studies in Biodiversity, Santa Barbara, Calif.: Santa Barbara Mus. Nat. Hist., 2000.Google Scholar
  17. 17.
    Decker, C., Olu, K., Cunha, R.L., and Arnaud-Haond, S., Phylogeny and diversification patterns among vesicomyid bivalves, PLoS One, 2012, vol. 7, art. ID e33359.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Endow, K. and Ohta, S., Occurrence of bacteria in the primary oocytes of vesicomyid clam Calyptogena soyoae, Mar. Ecol.: Prog. Ser., 1990, vol. 64, pp. 309–311.CrossRefGoogle Scholar
  19. 19.
    Fiala-Medioni, A. and Le Pennec, M., Adaptive features of the bivalve molluscs associated with fluid venting in the subduction zones off Japan, Palaeogeogr., Palaeoclimatol., Palaeoecol., 1989, vol. 71, pp. 161–167.CrossRefGoogle Scholar
  20. 20.
    Franzén, Å., Comparative morphological investigations into the spermiogenesis among Mollusca, Zool. Bidr. Uppsala, 1955, vol. 30, pp. 399–456.Google Scholar
  21. 21.
    Franzén, Å., On spermiogenesis, morphology of the spermatozoon, and biology of fertilization among invertebrates, Zool. Bidr. Uppsala, 1956, vol. 31, pp. 355–482.Google Scholar
  22. 22.
    Franzé, Å., Ultrastructural studies of spermatozoa in three bivalve species with notes on evolution of elongated sperm nucleus in primitive spermatozoa, Gamete Res., 1983, vol. 7, pp. 199–214.Google Scholar
  23. 23.
    Fujiwara, Y., Tsukahara, J., Hashimoto, J., and Fujikura, K., In situ spawning of a deep-sea vesicomyid clam: evidence for an environmental cue, Deep Sea Res., Part I, 1998, vol. 45, pp. 1881–1889.CrossRefGoogle Scholar
  24. 24.
    Goffredi, S.K. and Barry, J.P., Species-specific variation in sulfide physiology between closely related Vesicomyid clams, Mar. Ecol.: Prog. Ser., 2002, vol. 225, pp. 227–238.CrossRefGoogle Scholar
  25. 25.
    Goffredi, S.K., Hurtado, L.A., Hallam, S., and Vrijenhoek, R.C., Evolutionary relationships of deep-sea vent and cold seep clams (Mollusca: Vesicomyidae) of the “pacifica/lepta” species complex, Mar. Biol., 2003, vol. 142, pp. 311–320.CrossRefGoogle Scholar
  26. 26.
    Healy, J.M., Molluscan sperm ultrastructure: correlation with taxonomic units within the Gastropoda, Cephalopoda and Bivalvia, in Origin and Evolutionary Radiation of the Mollusca, Oxford: Oxford Univ. Press, 1996, pp. 99–113.Google Scholar
  27. 27.
    Healy, J.M., Keys, J.L., and Daddow, L.Y.M., Comparative sperm ultrastructure in pteriomorphian bivalves with special reference to phylogenetic and taxonomic implications, Geol. Soc. Spec. Publ., 2000, vol. 177, pp. 169–190.CrossRefGoogle Scholar
  28. 28.
    Healy, J.M., Mikkelsen, P.M., and Bieler, R., Sperm ultrastructure in Hemidonax pictus (Hemidonacidae, Bivalvia, Mollusca): comparison with other heterodonts, especially Cardiidae, Donacidae and Crassatelloidea, Zool. J. Linn. Soc., 2008, vol. 153, pp. 325–347.CrossRefGoogle Scholar
  29. 29.
    Heyl, T.P., Gilhooly, W.P., Chambers, R.M., et al., Characteristics of vesicomyid clams and their environment at the Blake Ridge cold seep, South Carolina, USA, Mar. Ecol.: Prog. Ser., 2007, vol. 339, pp. 169–184.CrossRefGoogle Scholar
  30. 30.
    Ikuta, T., Igawa, K., Tame, A., et al., Surfing the vegetal pole in a small population: extracellular vertical transmission of an ‘intracellular’ deep-sea clam symbiont, R. Soc. Open Sci., 2016, vol. 3, art. ID 160130.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Johnson, S.B., Krylova, E.M., Audzijonyte, A., et al., Phylogeny and origins of chemosynthetic vesicomyid clams, Syst. Biodiversity, 2017, vol. 15, no. 4, pp. 346–360.CrossRefGoogle Scholar
  32. 32.
    Kafanov, A.I. and Drozdov, A.L., Comparative sperm morphology and phylogenetic classification of recent Mytiloidea (Bivalvia), Malacologia, 1998, vol. 39, pp. 129–139.Google Scholar
  33. 33.
    Krylova, E.M. and Janssen, R., Vesicomyidae from Edison Seamount (South Western Pacific: Papua New Guinea: New Ireland fore-arc basin) (Bivalvia: Glossoidea), Arch. Molluskenkd., 2006, vol. 135, pp. 233–263.Google Scholar
  34. 34.
    Krylova, E.M., Kolpakov, E.V., Sharina, S.N., et al., Distribution patterns of chemosymbiotic bivalves of the subfamily Pliocardiinae (Bivalvia: Vesicomyidae) from the North-West Pacific, in 15th Int. Deep-Sea Biol. Symp., September 9–14, 2018, Monterey, Calif.: Monterey Bay Aquarium Res. Inst., 2018, pp. 32–33.Google Scholar
  35. 35.
    Krylova, E.M. and Sahling, H., Recent bivalve molluscs of the genus Calyptogena (Vesicomyidae), J. Molluscan Stud., 2006, vol. 72, pp. 359–395.CrossRefGoogle Scholar
  36. 36.
    Krylova, E.M. and Sahling, H., Vesicomyidae (Bivalvia): current taxonomy and distribution, PLoS One, 2010, vol. 5, no. 4, art. ID e9957.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Krylova, E.M., Sahling, H., and Janssen, R., Abyssogena: a new genus of the family Vesicomyidae (Bivalvia) from deep-water vents and seeps, J. Molluscan Stud., 2010, vol. 76, pp. 107–132.CrossRefGoogle Scholar
  38. 38.
    Krylova, E.M., Sellanes, J., Valdés, F., and D’Elía, G., Austrogena: a new genus of chemosymbiotic bivalves (Bivalvia; Vesicomyidae; Pliocardiinae) from the oxygen minimum zone off central Chile described through morphological and molecular analyses, Syst. Biodiversity, 2014, vol. 12, pp. 225–246.CrossRefGoogle Scholar
  39. 39.
    LaBella, A.L., Van Dover, C.L., Jollivet, D., and Cunningham, C.W., Gene flow between Atlantic and Pacific Ocean basins in three lineages of deep-sea clams (Bivalvia: Vesicomyidae: Pliocardiinae) and subsequent limited gene flow within the Atlantic, Deep Sea Res., Part II, 2016, vol. 137, pp. 307–317.CrossRefGoogle Scholar
  40. 40.
    Le Pennec, M. and Beninger, P.G., Reproductive characteristics and strategies of reducing-system bivalves, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2000, vol. 126, pp. 1–16.CrossRefGoogle Scholar
  41. 41.
    Lisin, E.S., Hannan, E.E., Kochevar, R.E., et al., Temporal variation in gametogenic cycles of vesicomyid clams, Invertebr. Reprod. Dev., 1997, vol. 31, pp. 307–318.CrossRefGoogle Scholar
  42. 42.
    Ockelmann, K.W., Developmental types in marine bivalves and their distribution along the Atlantic coast of Europe, in Proc. 1st Eur. Malacol. Congr., London, 1962, Cox, L.R. and Peake, J.F., Eds., London: Conchological Society of Great Britain and Ireland and the Malacological Society of London, 1965, pp. 25–35.Google Scholar
  43. 43.
    Parra, M., Sellanes, J., Dupré, E., and Krylova, E., Reproductive characteristics of Calyptogena gallardoi (Bivalvia: Vesicomyidae) from a methane seep area off Concepción, Chile, J. Mar. Biol. Assoc. U. K., 2009, vol. 89, no. 1, pp. 161–169.CrossRefGoogle Scholar
  44. 44.
    Peek, A.S., Gustafson, R.G., Lutz, R.A., and Vrijenhoek, R.C., Evolutionary relationships of deep-sea hydrothermal vent and cold-water seep clams (Bivalvia: Vesicomyidae): results from mitochondrial cytochrome oxidase subunit I, Mar. Biol., 1997, vol. 130, pp. 151–161.CrossRefGoogle Scholar
  45. 45.
    Popham, J.D., Comparative spermatozoon morphology and bivalve phylogeny, Malacol. Rev., 1979, vol. 12, pp. 1–20.Google Scholar
  46. 46.
    Skulachev, V.P., Mitochondrial filaments and clusters as intracellular power transmitting cables, Trends Biochem. Sci., 2001, vol. 26, no. 1, pp. 23–29.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. L. Drozdov
    • 1
    • 4
    Email author
  • E. M. Krylova
    • 2
  • A. A. Kudryavtsev
    • 3
    • 5
  • S. V. Galkin
    • 2
  • S. A. Tyurin
    • 1
    • 4
  1. 1.National Scientific Center of Marine Biology, Far East Branch, Russian Academy of SciencesVladivostokRussia
  2. 2.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia
  3. 3.Zoological Institute, Russian Academy of SciencesSt. PetersburgRussia
  4. 4.Far Eastern Federal UniversityVladivostokRussia
  5. 5.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations