Russian Journal of Marine Biology

, Volume 44, Issue 7, pp 580–591 | Cite as

A Study of the Properties of the Multi-Step Recurrent Models for the Interannual Dynamics of Epiphytic Diatom Communities

  • V. A. Parensky
  • E. V. LevchenkoEmail author


Communities of epiphytic diatoms develop seasonally. On macroalgae, they reach the highest density in the middle of summer and decline to a minimum value in winter. This discrete pattern makes it possible to use the tool of difference (recurrent) equations for testing the concept of density regulation on the interannual dynamics of the number of epiphytic diatoms. The properties of the obtained multi-step recurrent models for the interannual dynamics of the number of diatoms in the epiphyton of the macroalga Ulva lactuca Linnaeus collected from three areas of coastal waters in Peter the Great Bay, Sea of Japan (Amur Bay, Ussuri Bay, and Stark Strait), are considered. The proposed multi-step recurrent models do not contradict the primary data of observations. Each of the obtained descriptions for different water areas is characterized by its specific pattern of dynamics. The reproductive capacity of epiphytic diatom community is the lowest in the Stark Strait; the highest reproductive capacity is observed in Amur Bay. According to the models, the epiphytic diatom communities in different parts of Peter the Great Bay exhibit generally complex, pseudochaotic, dynamics of their number.


epiphytic diatoms interannual dynamics multi-step recurrent model pseudochaotic dynamics 



  1. 1.
    Levchenko, E.V. and Begun, A.A., Diatom algae of epiphyton on seaweeds in the Sobol Bay (Ussuri Bay, Sea of Japan), Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2008, vol. 154, pp. 248–258.Google Scholar
  2. 2.
    Parensky, V.A., Dynamics of abundance and fishing of pink salmon Oncorhynchus gorbuscha, Vopr. Ikhtiol., 2003, vol. 43, no. 3, pp. 352–360.Google Scholar
  3. 3.
    Proshkina-Lavrenko, A.I., Diatomovye vodorosli bentosa Chernogo morya (Diatoms of the Black Sea Benthos), Moscow: Akad. Nauk SSSR, 1963.Google Scholar
  4. 4.
    Ryabushko, L.I., Potentsial’no opasnye mikrovodorosli Azovo-Chernomorskogo basseina (Potentially Harmful Microalgae of the Azov-Black Sea Basin), Sevastopol: EKOSI-Gidrofizika, 2003.Google Scholar
  5. 5.
    Ryabushko, L.I. and Bondarenko, A.V., Mikrovodorosli planktona i bentosa Azovskogo morya (chek-list, sinonimika, kommentarii) (Plankton and Benthos Microalgae of the Sea of Azov (Check-list, Synonyms, and Commentary)), Sevastopol: EKOSI-Gidrofizika, 2011.Google Scholar
  6. 6.
    Svirezhev, Yu.M. and Logofet, D.O., Stability of Biological Communities, Moscow: Mir, 1983.Google Scholar
  7. 7.
    Shapiro, A.P. and Luppov, S.P., Rekurrentnye uravneniya v teorii populyatsionnoi biologii (Recurrent Equations in the Theory of Population Biology), Moscow: Nauka, 1983.Google Scholar
  8. 8.
    Guiry, M.D. and Guiry, G.M., AlgaeBase. World-wide Electronic Publication, Galway: Natl. Univ. Ireland, 2017. Cited Decemder 18, 2017.Google Scholar
  9. 9.
    Harlin, M.M., Seagrass epiphytes, in Handbook of Seagrass Biology: An Ecosystem Perspective, Phillips, R.C. and McRoy, C.P., Eds., New York: Garland STPM Press, 1980, pp. 117–151.Google Scholar
  10. 10.
    Mabrouk, L., Brahim, M.B., Hamza, A., et al., A comparison of abundance and diversity of epiphytic microalgal assemblages on the leaves of the seagrasses Posidonia oceanica (L.) and Cymodocea nodosa (Ucria) Asch in Eastern Tunisia, J. Mar. Biol., vol. 2014, Art. ID 275305. doi 10.1155/2014/275305Google Scholar
  11. 11.
    May, R.M., Biological populations obeying difference equations: stable points, stable cycles, and chaos, J. Theor. Biol., 1975, vol. 51, no. 2, pp. 511–524.CrossRefGoogle Scholar
  12. 12.
    May, R.M. and Oster, G.F., Bifurcations and dynamic complexity in simple ecological models, Am. Nat., 1976, vol. 110, no. 974, pp. 573–599.CrossRefGoogle Scholar
  13. 13.
    Paulick, G.J., Studies of the possible form of the stock and recruitment curve, Rapp. P.-V. Réun. - Cons. Int. Explor. Mer, 1973, vol. 164, pp. 302–315.Google Scholar
  14. 14.
    Pollard, J.H., A Handbook of Numerical and Statistical Techniques: With Examples Mainly from the Life Sciences, Cambridge: Cambridge Univ. Press, 1977.CrossRefGoogle Scholar
  15. 15.
    Ricker, W.E., Stock and recruitment, J. Fish. Res. Board Can., 1954, vol. 11, no. 5, pp. 559–623.CrossRefGoogle Scholar
  16. 16.
    Round, F.E., Crawford, R.M., and Mann, D.G., The Diatoms: Biology and Morphology of the Genera, Cambridge: Cambridge Univ. Press, 1990.Google Scholar
  17. 17.
    Totti, C., Poulin M., Romagnoli, T., et al., Epiphytic diatom communities on intertidal seaweeds from Iceland, Polar Biol., 2009, vol. 32, pp. 1681–1691. doi 10.1007/s00300-009-0668-4CrossRefGoogle Scholar
  18. 18.
    Wilkinson, L., Hill, M.-A., Welna, J.P., and Birkenbeuel, G.K., SYSTAT for Windows: Statistics. Version 5, Evanston, Ill.: SYSTAT Inc., 1992.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far East Branch, Russian Academy of SciencesVladivostokRussia

Personalised recommendations