Journal of Mining Science

, Volume 54, Issue 4, pp 681–689 | Cite as

Influence of Surface Properties of Minerals on Rebellious Ore Disintegration

  • V. S. Portnov
  • V. M. Yurov
  • A. D. MausymbaevaEmail author
Mineral Dressing


The processes of rebellious ore disintegration with regard to the surface properties of minerals and rocks are discussed. The methods are proposed for the experimental determination of surface tension of solids during evaluation of dispergating efficiency, and the calculation procedure of the surface layer thickness during ore disintegration is offered. The calculations of the fusion temperatures of nanoparticles obtained in nonconventional disintegration of rebellious ore are presented. The calculations are performed for the nanoparticles with possible content of the most metals from the periodic chart.


Ore disintegration mineral surface tension surface layer thickness fusion temperature nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhurkov, S.N., Kinetic Conception of Strength of Solid Bodies, Vestn. AN SSSR, 1968, no. 3, pp. 46–52.Google Scholar
  2. 2.
    Olemskoi, A.I. and Katsnel’son, A.A., Sinergetika kondensirovannoi sredy (Sinergetics of Condensed Medium), Moscow: URSS, 2003.Google Scholar
  3. 3.
    Chanturia, V.A., Contemporary Problems of Mineral Raw Material Beneficiation in Russia, Gornyi Zhurnal, 2005, no. 12, pp. 56–64.Google Scholar
  4. 4.
    Chanturia, V.A., Bunin, I.Zh., and Lunin, V.D., Non-Traditional Methods of Disintegration and Liberating Resistant Gold-Bearing Minerals: Theory and Technological Results, Gornyi Zhurnal, 2005, no. 4, pp. 68–74.Google Scholar
  5. 5.
    Portnov, V.S. and Yurov, V.S., Connection between Magnetic Susceptibility of Magnetite Ores and Thermodynamic Parameters and Content of Iron, Gornyi Zhurnal, 2004, no. 6, pp. 122–127.Google Scholar
  6. 6.
    Bullakh, A.G. and Bullakh, K.G., Fiziko-khimicheskie svoistva mineralov i komponentov gidrotermal’nykh rastvorov (Physicochemical Properties of Minerals and Components of Hydrothermal Solutions), Leningrad: Nedra, 1978.Google Scholar
  7. 7.
    Kuznetsov, V.D., Poverkhnostnaya energiya tverdykh tel (Surface Energy of Solids), Moscow: Gostekhizdat, 1954.Google Scholar
  8. 8.
    Rebinder, P.A., On the Influence of Changes in the Surface Energy on the Cleavability, Hardness, and Other Properties of Crystals, Proc. IV Congr. of Russian Physicists, Moscow-Leningrad: GIZ, 1928.Google Scholar
  9. 9.
    Roldugin, V.I., Fizikokhimia poverkhnosti (Physical Chemistry of Surface), Dolgoprudny: ID Intellekt, 2008.Google Scholar
  10. 10.
    Dortman, N.B. (Ed.), Fizicheskie svoistva gornykh porod i poleznykh iskopaemykh: spravochnik geofizika (Physical Properties of Rocks and Minerals: Handbook of Geophysicist), Moscow: Nedra, 1984.Google Scholar
  11. 11.
    Yurov, V.M., Eshchanov, A.N., and Kuketaev, A.T., RK patent no. 57691, Byull. Izobret. RK, 2008, no. 12.Google Scholar
  12. 12.
    Yurov, V.M., Portnov, V.S., and Puzeeva, M.P., RK patent no. 58155, Byull. Izobret. RK, 2008, no. 12.Google Scholar
  13. 13.
    Panin, V.E., Egorushkin, V.E., Makarov, P.V., and Grinyaev, Y.V., Fizicheskaya mezomekhanika i komp’yuternoe konstruirovanie materialov (Physical Mesomechanics and Computer-Aided Design of Materials), Novosibirsk: Nauka, 1995.Google Scholar
  14. 14.
    Komov, I.L., Radiotsionnaya mineralogiya i geokhimiya (Radiation Mineralogy and Geochemistry), Kiev: Nauk. dumka, 2006.Google Scholar
  15. 15.
    Bunin, I.Zh., Theoretical Fundamentals of Nanosecond Electromagnetic Pulse Effect on Disintegration and Exposure of Finely-Dispersed Mineral Complexes and Recovery of Noble Metals from Ores, Doc. Tech. Sci. Thesis, Moscow, RGGRU, 2009.Google Scholar
  16. 16.
    Birringer, R. and Gleiter, H., Nanocrystalline Materials, Encyclopedia of Material Science and Engineering, R. W. Cahn (Ed.), Oxford: Pergamon Press, 1988, pp. 339–349.Google Scholar
  17. 17.
    Zhu, X., Structural Investigation of Nanocrystalline Materials, PhD Thesis, Germany, Saarbrucken: University of Saarbrucken, 1986.Google Scholar
  18. 18.
    Sui, M.L. and Lu, K., Thermal Expansion Behavior of Nanocrystalline Ni-P Alloys of Different Grain Size, Nanostruct. Mater., 1995, vol. 6, no. 5–8, pp. 651–654.CrossRefGoogle Scholar
  19. 19.
    Makarov, G.N., Experimental Methods for Determining the Melting Temperature and the Heat of Melting of Clusters and Nanoparticles, UFN, 2010, vol. 180, no. 2, pp. 185–207.CrossRefGoogle Scholar
  20. 20.
    Shesternev, D.M., Myazin, V.P., and Tataurov, S.B., Study of Cryogenic Disintegration of Gold-Quartz Ores to Intensify the Heap Leaching of Gold, J. Min. Sci., 2006, vol. 42, no. 1, pp. 91–98.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. S. Portnov
    • 1
  • V. M. Yurov
    • 2
  • A. D. Mausymbaeva
    • 1
    Email author
  1. 1.Karaganda State Technical UniversityKaragandaKazakhstan
  2. 2.Buketov Karaganda State UniversityKaragandaKazakhstan

Personalised recommendations