Journal of Mining Science

, Volume 54, Issue 4, pp 671–680 | Cite as

Treatment Technology for Niobium—Bearing Ore Processing Wastewater of Various Ionic-Dispersion Compositions

  • V. F. SkorokhodovEmail author
  • S. P. Mesyats
  • V. V. Biryukov
  • S. P. Ostapenko
Mineral Dressing


Based on the studies into ionic—dispersion compositions of sewage water after mining and processing of niobium ore of the Lovozero deposit, it is substantiated to be expedient to convert some pollution agents from solution to suspension state. A combined process is proposed for treatment of mine wastewater, which is 94% of total sewage water of mining and processing, by integrating coagulation, sorption and flotation techniques. The mathematical model of aggregation of suspension particles with regard to the hydrodynamic mode of coagulation is suggested. The model makes it possible to predict material and dispersion compositions of a new multi-phase system under different temperatures towards automation of the wastewater treatment process. The solution on forming surface properties of activated aqueous dispersions of air using a modified finely dispersed sorbent with intent to intensify the wastewater purification process.


Niobium-bearing ore integrated wastewater treatment flotation activated aqueous air dispersion sorption coagulation modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gershenkop, A.Sh., Skorokhodov, V.F., Sulimenko, L.P., and Kreimer, L.L., Intensification of Waste Water Purification Processes, GIAB, 2000, no. 31, pp. 167–170.Google Scholar
  2. 2.
    Mesyats, S.P. and Ostapenko, S.P., Estimation of Contents and State of Niobium in Wastewaters Generated by Rare Metals Processing at the Lovozero Deposit for Substantiation of Purification Method, GIAB, Special Issue, 2014, no. 12, pp. 20–27.Google Scholar
  3. 3.
    Mesyats, S. and Ostapenko, S., Substantiation of Sorption Method for Removing Niobium from Sewage Water after Rare-Metal Ores Processing, Int. Multidisciplinary Scientific GeoConference SGEM, 2016, Book 5, Vol. II, pp. 783–790.Google Scholar
  4. 4.
    Vlasov, K.A., Kuzmenko, M.V., and Es’kova, E.M., Levozerskii shchelochnoi massiv: porody, pegmatity, mineralogia, geokhimia i genezis (Levozero Alkaline Massif: Rocks, Pegmatites, Mineralogy and Origin), Moscow, AN SSSR, 1959.Google Scholar
  5. 5.
    Ivanov, V.V., Ekologicheskaya geokhimiya elementov (Ecological Geochemistry of Elements: Reference Book), vol. 5: Rare d-Elements, Moscow, Ekologia, 1997.Google Scholar
  6. 6.
    Deblonde, G.J., Moncomble, A., Cote, G., Bélair, S., and Chagnes, A., Experimental and Computational Exploration of the UV-Visible Properties of Hexaniobate and Hexatantalate Ions, RSC Advances, 2015, 5 (10), pp. 7619–7627.CrossRefGoogle Scholar
  7. 7.
    Deblonde, G.J., Moncomble, A., Cote, G., et al., RSC Adv., 2014, pp. 1–3; RSC Adv., 2015, no. 5, pp. 64119–64124.Google Scholar
  8. 8.
    Nyman, M., Polyoxoniobate Chemistry in the 21st Century, Dalton Trans, 2011, no. 40, pp. 8049–8058.Google Scholar
  9. 9.
    Klemperer, W.G., and Marek, K.A. An 17O NMR Study of Hydrolyzed Nbv in Weakly Acidic and Basic Aqueous Solutions, Eur. J. Inorg. Chem, 2013, pp. 1762–1771.Google Scholar
  10. 10.
    Wang, X., Zheng, S., Xu H., and Zhang, Y. Leaching of Niobium and Tantalum from a Low-Grade Ore Using a KOH Roast-Water Leach System, Hydrometallurgy, 2009, 98, pp. 219–223.CrossRefGoogle Scholar
  11. 11.
    Huang, P., Qin, C., Su, Z.-M., et al., Self-Assembly and Photocatalytic Properties of Polyoxoniobates: Nb24O72, Nb32O96, and K12Nb96O288 Clusters, J. Am. Chem. Soc., 2012, 134 (34), pp. 14004–14010.CrossRefGoogle Scholar
  12. 12.
    Jin, L., Zhu, Z.K., Wu, YL., et al., Record High-Nuclearity Polyoxoniobates: Discrete Nanoclusters Nb114, Nb81, and Nb52, and Extended Frameworks Based on Cu3 Nb78 and Cu4 Nb78, Angew. Chem. Int. Ed., 2017, 56(51), pp. 16288–16292.CrossRefGoogle Scholar
  13. 13.
    Gartman, T.N. and Klushin, D.V., Osnovy komp’yuternogo modelirovania khimiko-tekhnologicheskikh protsessov (Fundamentals of Computer Modeling of Chemical-Technological Processes: Textbook for Colleges), Moscow: Akademkniga, 2006.Google Scholar
  14. 14.
    Eremin, E.N., Osnovy khimicheskoi kinetiki (Basic Principles of Chemical Kinetics), Moscow, Vyssh. Shkola, 1976.Google Scholar
  15. 15.
    Lukashev, E.A., Moiseev, A.V., and Draginsky, V.L., Formation, Growth and Disintegration of Coagulant Flakes during Treatment of Natural Water. Mathematical Reconstruction of Process Flow, Teor. Prikl. Probl. Servisa, 2004, no. 4, pp. 37–46.Google Scholar
  16. 16.
    Romanovsky, B.V., Osnovy khimicheskoy kinetiki (Basic Principles of Chemical Kinetics), Moscow, Ekzamen, 2006.Google Scholar
  17. 17.
    Babenkov, E.D., Influence of Water MixingoOn Physical Parameters of Coagulated Suspension, Khim. Tekhnolog. Ochist. Vody, 1980, vol. 2, no. 5, pp. 387–391.Google Scholar
  18. 18.
    Mel’nikov, N.N, Skorokhodov, V.F., Mesyats, S.P., and Ostapenko, S.P., RF patent no. 2320548, Byull. Izobret., 2008, no. 9.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. F. Skorokhodov
    • 1
    Email author
  • S. P. Mesyats
    • 1
  • V. V. Biryukov
    • 1
  • S. P. Ostapenko
    • 1
  1. 1.Mining Institute, Kola Science CenterRussian Academy of SciencesApatityRussia

Personalised recommendations