Advertisement

Journal of Mining Science

, Volume 54, Issue 4, pp 541–549 | Cite as

Geomechanical and Hydrodynamic Fields in Producing Formation in the Vicinity of Well with Regard to Rock Mass Permeability-Effective Stress Relationship

  • L. A. Nazarova
  • L. A. NazarovEmail author
Geomechanics
  • 4 Downloads

Abstract

The nonlinear model is developed to describe geomechanical and hydrodynamic fields in the vicinity of a vertical well in a fluid-saturated formation for the case when the permeability k depends on the effective stress σf by the exponential law. The analytical solutions are obtained for the porous-elastic and porous-elastoplastic modes of deformation of the well vicinity, based on which the change in the pressure and rate of flow under the variation of parameters characterizing the dependence k(σf) is analyzed. It is found that the rate of flow exponentially decreases with an increasing horizontal stress of the external field; the permeability of the irreversible strain zone around the well decreases with the distance from the well boundary. The test scheme is proposed for permeability of samples with the center hole under side loading, and the experimental data interpretation procedure is put forward, which enables finding the empirical dependence k(σf).

Keywords

Rock mass porous-elastic and porous-elastoplastic deformation effective stress permeability well experiment sample with center hole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fjaer, E., Holt, R. M., Horsrud, P., et al., Petroleum Related Rock Mechanics, Elsevier, 2008.Google Scholar
  2. 2.
    Dake, L.P. The Practice of Reservoir Engineering, Elsevier, 2001.Google Scholar
  3. 3.
    Dakhnov, V.N., Geofizicheskie metody opredeleniya kollektorskikh svoistv i neftegazonasyscheniya gornykh porod (Geophysics for Estimation of Porosity, Permeability, and Fluid Saturation of Reservoir Rocks), Moscow: Nedra, 1985.Google Scholar
  4. 4.
    Lyons, W., Plisga, G., Lorenz, M., Standard Handbook of Petroleum and Natural Gas Engineering, Gulf Professional Publishing, 2015.Google Scholar
  5. 5.
    Nazarova, L.A., Nazarov, L.A., Epov, M.I., and El’tsov, I.N., Evolution of Geomechanical and Electro-Hydrodynamic Fields in Deep Well Drilling in Rocks, J. Min. Sci., 2013, vol. 49, no. 5, pp. 704–714.CrossRefGoogle Scholar
  6. 6.
    Yeltsov, I.N., Nazarova, L.A., Nazarov, L.A., Nesterova, G.V., Sobolev, A.Yu., and Epov, M.I., Geomechanics and Fluid Flow Effects on Electric Well Logs: Multiphysics Modeling, Russian Geology and Geophysics, 2014, vol. 55, no. 5–6, pp. 978–990.Google Scholar
  7. 7.
    Holt, R.M., Permeability Reduction Induced by a Nonhydrostatic Stress Field, SPE Formation Evaluation, 1990, no. 12, pp. 444–448.Google Scholar
  8. 8.
    Ghabezloo, S., Sulem, J., Guedon, S., and Martineau, F. Effective Stress Law for the Permeability of a Limestone, Int. J. of Rock Mechanics and Mining Science, 2009, vol. 46, pp. 297–306.CrossRefGoogle Scholar
  9. 9.
    Espinoza, D.N., Vandamme, M., Pereira, J.-M., et al., Measurement and Modeling of Adsorptive-Poromechanical Properties of Bituminous Coal Cores Exposed to CO2: Adsorption, Swelling Strains, Swelling Stresses and Impact on Fracture Permeability, Int. J. of Coal Geology, 2014, vol. 134–135, pp. 80–95.CrossRefGoogle Scholar
  10. 10.
    Schutjens, P.M. T.M., Hanssen, T.H., Hettema, M.H.H., et al., Compaction-Induced Porosity/Permeability Reduction in Sandstone Reservoirs: Data and Model for Elasticity-Dominated Deformation, SPE Reservoir Evaluation & Engineering, 2004, vol. 7, no. 3, 202–216.CrossRefGoogle Scholar
  11. 11.
    Zhu, W., Montesi, L., and Wong, T.-F. Characterizing the Permeability-Porosity Relationship during Compactive Cataclastic Flow, 42nd U.S. Rock Mechanics Symposium, USRMS, San Francisco: ARMA, 2008.Google Scholar
  12. 12.
    Connell, L.D., Lu, M., and Pan, Z., An Analytical Coal Permeability Model for Tri-Axial Strain and Stress Conditions, Int. J. of Coal Geology, 2010, vol. 84, pp. 103–114.CrossRefGoogle Scholar
  13. 13.
    GOST 26450.2-85. Porody gornye. Metod opredeleniya koeffitsienta absolyutnoi gazopronitsaemosti pri statsionarnoi i nestatsionarnoi fltratsii (State Standard. Working document 26450.2-85. Rocks. A Method for Determination of Absolute Gas Permeability at Steady and Nonsteady Flow), Moscow: Izd. Standartov, 1985.Google Scholar
  14. 14.
    Zoback, M.D., Reservoir Geomechanics, Cambridge University Press, 2010.Google Scholar
  15. 15.
    Yeltsov, I.N., Nazarov, L.A., Nazarova, L.A., Nesterova, G.V., and Epov, M.I., Logging Interpretation Taking into Account Hydrodynamical and Geomechanical Processes in an Invaded Zone, Doklady Earth Sci., 2012, vol. 445, no. 2, pp. 1021–024.CrossRefGoogle Scholar
  16. 16.
    Mishchenko, I.T., Skvazhinnaya dobycha nefti (Oil Production), Moscow: Neft Gaz, 2003.Google Scholar
  17. 17.
    Khisamov, R.S., Suleimanov, E.I., Farkhullin, R.G., et al., Gidrodinamicheskie issledovaniya skvazhin i metody obrabotki rezul’tatov izmerenii (Well Testing and Methods for Data Processing), Moscow: VNIIOENG, 2000.Google Scholar
  18. 18.
    Mufazalov, R.Sh., Skin Factor: Basic Relationships and Interplay Between Fluid Dynamic Parameters of a Zoned Reservoir and a Well, ROGTEC, 2015, pp. 76–90.Google Scholar
  19. 19.
    Medvedev, A.I. and Boganik, V.N., How to Determine the Skin Factor, Geolog., Geofiz. Razrab. Neftya. Gaz. Mestorozhd., 2004, no. 5, pp. 42–45.Google Scholar
  20. 20.
    Penkovsky, V.I. and Korsakova, N.K., Modeling Hydraulic Fracture: Phenomenological Approach, PMTF, 2015, vol. 56, no. 5, pp. 139–148.Google Scholar
  21. 21.
    Nikolaevsky, V.N., Geomekhanika. Sobranie trudov. Tom 1: Razrushenie i dilatansiya. Neft’ i gaz. Seriya sovremennye neftegazovye tekhnologii (Geomechanics. A collection of papers. Book 1: Failure and Dilatancy. Oil and gas. Series of Advanced Oil and Gas Technologies), Izhevsk: Izd. IKI, 2010.Google Scholar
  22. 22.
    Coussy, O., Mechanics and Physics of Porous Solids, John Wiley & Son Ltd, 2010.Google Scholar
  23. 23.
    Shelukhin, V.V. and Yeltsov, I.N., Wellbore Zone Dynamics Related to Drilling in a Porous Elastic Reservoir, Geofiz. Zh., 2012, vol. 34, no. 4, pp. 265–272.Google Scholar
  24. 24.
    Jaeger, J.C., Cook, N.G.W., and Zimmerman, R., Fundamentals of Rock Mechanics, Wiley, 2007.Google Scholar
  25. 25.
    Harindra, J.F., Handbook of Environmental Fluid Dynamics, Vol. 1: Overview and Fundamentals, CRC Press, 2012.Google Scholar
  26. 26.
    Kochin, N.E., Kibel, I.A., and Roze, N.V., Teoreticheskaya gidromekhanika. Chast’1 (Theoretical Fluid Dynamics, Part 1), Moscow: Fizmatgiz, 1963.Google Scholar
  27. 27.
    Kalinin, A.G., Burenie neftyanykh i gazovykh skvazhin (Drilling of Oil and Gas Wells), Moscow: TsentrLitNefteGaz, 2008.Google Scholar
  28. 28.
    Dortman, N.B., Fizicheskie svoistva gornykh porod i poleznykh iskopaemykh (Physical Properties of Rocks and Mineral Resources), Moscow: Nedra, 1984.Google Scholar
  29. 29.
  30. 30.
    Bradley, H.B., Petroleum Engineering Handbook: Richardson, TX, Society of Petroleum Engineers, 1987.Google Scholar
  31. 31.
    GOST 21153.2-84. Porody gornye. Metody opredeleniya predela prochnosti pri odnoosnom szhatii (State Standard. Working document GOST 21153.2-84. Rocks. Methods for Determination of Ultimate Strength at Unconfined Compressive Stress), Moscow: Izd. Standartov, 1984.Google Scholar
  32. 32.
    GOST 21153.3-85. Porody gornye. Metody opredeleniya predela prochnosti pri odnoosnom rastyazhenii (State Standard. Working document GOST 21153.3-85. Rocks. Methods for Determination of Ultimate Strength at Unconfined Tensile Stress), Moscow: Izd. Standartov, 1985.Google Scholar
  33. 33.
    GOST 28985–91. Porody gornye. Metody opredeleniya deformatsionnykh kharakteristik pri odnoosnom szhatii (State Standard. Working document GOST 28985–91. Rocks. Methods for Determination of Strain Parameters at Unconfined Compressive Stress), Moscow: Izd. Standartov, 1991.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Chinakal Institute of Mining, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations