Advertisement

Journal of Mining Science

, Volume 54, Issue 2, pp 194–201 | Cite as

Features of Uniaxial Compression Failure of Brittle Rock Samples with Regard to Grain Characteristics

  • V. P. EfimovEmail author
Rock Failure
  • 14 Downloads

Abstract

The results are presented for uniaxial compression testing of brittle rock samples; their failure occur in the form of columnar cracking along the axis of applying the force. Test results are compared with characteristic quantities determining tensile strength. Sample failure is modeled with regard for grain characteristics, which makes it possible to estimate the ratio of compression strength to tensile strength.

Keywords

Strength crack resistance rock failure structural parameter mineral grain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fairhurst, C., and Cook, N.G.W., The Phenomenon of Rock Splitting Parallel to the Direction of Maximum Compression in the Neighbourhood of a Surface, Proc. of the 1st Congress of the International Society of Rock Mechanics, Lisbon, 1966.Google Scholar
  2. 2.
    Vvedenie v mekhaniku skal’nykh porod (Introduction to Hard-Rock Mechanics), Bok, Kh., Ed., Moscow: Mir, 1983.Google Scholar
  3. 3.
    Zhurkov, S.N., Kinetic Concept of the Strength of Solids, Izv. AN SSSR, Neorg. Mat., 1967, vol. 3, no. 10, pp. 1767–1777.Google Scholar
  4. 4.
    Gelazov, M.A., Kuksenko, V.S., and Slutsker, A.I., Fibrillar Structure and Submicroscopic Cracks in Oriented Crystalline Polymers, FTT, 1970, vol. 12, pp. 100–108.Google Scholar
  5. 5.
    Efimov, V.P., Investigation Into the Long-Term Strength of Rocks under Loading with a Constant Rate, J. Min. Sci., 2007, vol. 43, no. 6, pp. 600–606.CrossRefGoogle Scholar
  6. 6.
    Kucheryavy, F.I., Mikhalyuk, A.V., and Demchenko, L.A., Energy of Activation and Energy Intensity of Rock Fracture, Izv. Vuzov. Gorny Zh., 1980, no. 5, pp. 57–63.Google Scholar
  7. 7.
    Veksler, Yu.A., Durability of Rocks Under Compression, J. Min. Sci., 1979, vol. 15, no. 3, pp. 250–254.Google Scholar
  8. 8.
    Griffith, A.A., Theory of Rupture, Proc. First Int. Congr. Applied Mechanics, Delft, 1924.Google Scholar
  9. 9.
    Khan, Kh., Teoriya uprugosti (Theory of Elasticity), Moscow: Mir, 1988.Google Scholar
  10. 10.
    Novozhilov, V.V., On the Foundations of a Theory of Equilibrium Cracks in Elastic Solids, PMM, 1969, vol. 33, no. 5, pp. 797–812.Google Scholar
  11. 11.
    Lajtai, E.Z., Effect of Tensile Stress Gradient on Brittle Fracture Initiation, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1972, vol. 9, no. 5, pp. 569–578.CrossRefGoogle Scholar
  12. 12.
    Suknev, S.V., Novopashin, M.D., Determination of Local Mechanical Properties of Materials, Doklady Physics, 2000, vol. 45, issue 7, pp. 339–341.CrossRefGoogle Scholar
  13. 13.
    Legan, M.A., Correlation of Local Strength Gradient Criteria in a Stress Concentration Zone with Linear Fracture Mechanics, Journal of Applied Mechanics and Technical Physics, 1993, vol. 34, no. 4, pp. 585–592.CrossRefGoogle Scholar
  14. 14.
    Kharlab, V.D., Minin, V.A., Kriterii prochnosti, uchityvayushchii vliyanie gradient napryazhennogo sostoyaniya. Issledovaniya po mekhanike stroitel’nykh konstruktsii i materialov (Strength Criterion Considering Effect of Stress Gradient. Research on Mechanics of Engineering Structures and Materials), Leningrad: LISI, 1989.Google Scholar
  15. 15.
    Kornev, V.M., Generalized Sufficient Strength Criteria. Description of Pre-Fracture Zone, Journal of Applied Mechanics and Technical Physics, 2002, vol. 43, no. 5, pp. 763–769.CrossRefGoogle Scholar
  16. 16.
    Efimov, V.P., Rock Tests in Nonuniform Fields of Tensile Stresses, Journal of Applied Mechanics and Technical Physics, 2013, vol. 54, no. 5, pp. 857–865.CrossRefGoogle Scholar
  17. 17.
    Gol’dshtein, R.V., Compression Fracture, Uspekh. Mekh., 2003, vol. 2, pp. 2–20.Google Scholar
  18. 18.
    Gol’dshtein, R.V., Osipenko, N.M., Structures in Fracture Processes, Izv. RAN. MTT, 1999, no. 5, pp. 49–71.Google Scholar
  19. 19.
    Hoek, E., Bieniawski, Z.T., Brittle Rock Fracture Propagation in Rock under Compression, Int. J. Fract. Mech., 1965, vol. 1, no. 3, pp. 137–155.CrossRefGoogle Scholar
  20. 20.
    Lajtai, E.Z., Brittle Fracture in Compression, Int. J. Fract., 1974, vol. 10, no. 4, pp. 525–536.CrossRefGoogle Scholar
  21. 21.
    Lajtai, E.Z. and Lajtai, V.N., The Collapse of Cavities, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1975, vol. 12, vol. 4, pp. 81–86.CrossRefGoogle Scholar
  22. 22.
    Evans, A.G., Biswas, D.R., and Fulrath, R.M., Some Effects of Cavities on the Fracture of Ceramics, I. Cylindrical Cavities, II. Spherical Cavities, J. Am. Ceram. Soc., 1979, vol. 62, pp. 95–106.CrossRefGoogle Scholar
  23. 23.
    Sammis, C.G., Ashby, M.F., The Failure of Brittle Porous Solids under Compressive Stress States, Acta Metall., 1986, vol. 34, no. 3, pp. 511–526.CrossRefGoogle Scholar
  24. 24.
    Davis, T., Healy, D., Bubeck, A., and Walker, R., Stress Concentrations around Voids in Three Dimensions. The Roots of Failure, Journal of Structural Geology, 2017, vol. 102, pp. 193–207.CrossRefGoogle Scholar
  25. 25.
    Odintsev, V.N., Mechanism of the Zonal Disintegration of a Rock Mass in the Vicinity of Deep-Level Workings, J. Min. Sci., 1994, vol. 30, no. 4, pp. 334–343.CrossRefGoogle Scholar
  26. 26.
    Nikitin, L.V. and Odintsev, V.N., Mechanics of Disconnecting Destruction of Compressed Gas-Bearing Rocks, Izv. AN SSSR. MTT, 1988, no. 6, pp. 135–144.Google Scholar
  27. 27.
    Srouli, D.E., Vyazkost’ razrusheniya pri ploskoi deformatsii. Razrushenie (Fracture Toughness at Plane Deformation), vol. 4, Moscow: Mashinostroenie, 1977.Google Scholar
  28. 28.
    Spravochnik fizicheskikh svoistv gornykh porod (Register of Physical Properties of Rocks), E.D. Mel’nikov (Ed.), Moscow: Nedra, 1975.Google Scholar
  29. 29.
    Zhurkov, S.N., Kuksenko, V.S., Petrov, V.A., Savel’ev, V.N., and Sultanov, U.O., On Predicting the Failure of Rocks, Izv. AN SSSR. Fiz. Zem., 1977, no. 6, pp. 11–18.Google Scholar
  30. 30.
    Mushkhelishvili, N.I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti (Some Basic Problems of Mathematical Theory of Elasticity), Moscow: Nauka, 1966.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Chinakal Institute of Mining, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations