Russian Journal of Developmental Biology

, Volume 50, Issue 2, pp 39–58 | Cite as

Cystathionine β-Synthase in the Brain of the Trout Oncorhynchus mykiss after Unilateral Eye Damage and in Conditions of in vitro Cultivation

  • E. V. PushchinaEmail author
  • A. A. Varaksin
  • D. K. Obukhov


Expression of cystathionine β-synthase (CBS) in the brain of adult trout under normal conditions and 1 week after an eye injury was assessed using Western blot analysis. The study of CBS distribution in the brain of intact trout and after a mechanical eye injury in the telencephalon, tectum, cerebellum, and brainstem was carried out by the method of immunoperoxidase labeling on free-floating sections. The results of the study showed an increase in CBS expression in different brain divisions after an eye injury. In the visual projection center of the brain (tectum), radial glia cells expressing CBS were revealed after the injury. The emergence of CBS+ heterogeneous radial glia in the trout tectum after eye injury indicates the ability of the reactive neural stem cells (NSC) to synthesize hydrogen sulfide. CBS+ fibers and cells were found in the proliferative zones of cerebellum (valvula) and telencephalon (ventral region). In the intact trout tegmentum, CBS expression was observed in large neurons of the dorsal region and in the proliferative zones. After the eye injury, reactive neurogenic niches appeared in the brainstem, and no CBS-immunopositivity was detected in the periventricular zone. The increased expression of H2S-producing CBS enzyme after a traumatic impact can probably be explained by the neuroprotective functions of hydrogen sulfide, which are implemented in the matrix zones of the brain associated with reparative neurogenesis. A cultivation of trout brain cells showed the formation of neurosphere-like complexes, a part of which exhibited CBS-immunopositivity in the monolayer.


hydrogen sulfide cystathionine β-synthase optic nerve reparative neurogenesis radial glia neurosphere-like complex primary cell culture 



The work was financially supported by the president of the Russian Federation (grant no. MD-4318.2015.4) and the Far East Program for Basic Research for 2015–2017, Far East Branch, Russian Academy of Sciences (project no. 15-I-6-116, section III).


  1. 1.
    Braun, K., Scheich, H., Schachner, M., and Heizmann, C.W., Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose uptake in the brain of the zebra finch. I. Auditory and vocal motor systems, Cell Tissue Res., 1985, vol. 240, pp. 101–115.CrossRefGoogle Scholar
  2. 2.
    Doe, C.Q., Fuerstenberg, S., and Peng, C.Y., Neural stem cells: from fly to vertebrates, J. Neurobiol., 1998, vol. 36, pp. 111–127.CrossRefGoogle Scholar
  3. 3.
    Hinsch, K. and Zupanc, G.K., Generation and long-term persistence of new neurons in the adult zebrafish brain: a quantitative analysis, Neuroscience, 2007, vol. 146, pp. 679–696.CrossRefGoogle Scholar
  4. 4.
    Kizil, C., Kaslin, J., Kroehne, V., and Brand, M., Adult neurogenesis and brain regeneration in zebrafish, Dev. Neurobiol., 2012, vol. 72, pp. 429–461.CrossRefGoogle Scholar
  5. 5.
    Kyritsis, N., Kizil, C., Zocher, S., Kroehne, V., Kaslin, J., Freudenreich, D., Iltzsche, A., and Brand, M., Acute inflammation initiates the regenerative response in the adult zebrafish brain, Science, 2012, vol. 338, pp. 1353–1356.CrossRefGoogle Scholar
  6. 6.
    Nagpure, B.V. and Bian, J.S., Brain, learning, and memory: role of H2S in neurodegenerative diseases, Handb. Exp. Pharmacol., 2015, vol. 230, pp. 193–215.CrossRefGoogle Scholar
  7. 7.
    Ogino, T., Sawada, M., Takase, H., Nakai, C., Herranz-Pérez, V., Cebrián-Silla, A., Kaneko, N., García-Verdugo, J.M., and Sawamoto, K., Characterization of multiciliated ependymal cells that emerge in the neurogenic niche of the aged zebrafish brain, J. Comp. Neurol., 2016, vol. 524, pp. 2982–2992.CrossRefGoogle Scholar
  8. 8.
    Palencia, G., Medrano, J.A., Ortiz-Plata, A., Farfan, D.J., Sotelo, J., Sanchez, A., and Trejo-Solis, C., Anti-poptotic, anti-oxidant, and anti-inflammatory effects of thalidomide on cerebral ischemia/reperfusion injury in rats, J. Neurol. Sci., 2015, vol. 351, pp. 78–87.CrossRefGoogle Scholar
  9. 9.
    Puschina, E.V., Neurochemical organization and connections of the cerebral preglomerular complex of the masu salmon, Neurophysiology, 2012, vol. 43, no. 6, pp. 437–451.CrossRefGoogle Scholar
  10. 10.
    Pushchina, E.V. and Varaksin, A.A., Hydrogen sulfide-, parvalbumin-, and GABA-producing system in the masu salmon brain, Neurophysiology, 2011, vol. 43, no. 2, pp. 109–122.Google Scholar
  11. 11.
    Pushchina, E.V. and Varaksin, A.A., Neurolin expression in the optic nerve and immunoreactivity of Pax6-positive niches in the brain of rainbow trout (Oncorhynchus mykiss) after unilateral eye injury, Neural Regen. Res., [serial online]. 2019 [cited 2018 Nov 21]; vol. 14, pp. 156–171. Available from: http://www.nrronline. org/text.asp?2019/14/1/156/243721.Google Scholar
  12. 12.
    Pushchina, E.V., Varaksin, A.A., and Obukhov, D.K., Cystathionine β-synthase in the CNS of masu salmon Oncorhynchus masou (Salmonidae) and carp Cyprinus carpio (Cyprinidae), Neurochem. J., 2011, vol. 5, no. 1, pp. 24–34.CrossRefGoogle Scholar
  13. 13.
    Pushchina, Ye.V., Obukhov, D.K., and Varaksin, A.A., Neurochemical markers of cells of the periventricular brain area in the masu salmon Oncorhynchus masou (Salmonidae), Russ. J. Dev. Biol., 2012a, vol. 43, no. 1, pp. 35–48.CrossRefGoogle Scholar
  14. 14.
    Pushchina, E.V., Varaksin, A.A., and Obukhov, D.K., Gaseous mediators in the brain of masu salmon Oncorhynchus masou (Salmoniformes, Salmonidae), Zh. Evol. Biokhim. Fiziol., 2012b, vol. 48, no. 1, pp. 85–95.Google Scholar
  15. 15.
    Pushchina, E.V., Varaksin, A.A., Shukla, S., and Bulygyn, D.A., Multiphoton confocal microscopy (in vivo imaging) in the study of early response of macrophages/microglia in damaged midbrain of juvenile chum salmon Oncorhynchus keta, Am. J. BioSci. Spec. Iss.: Adult Repar. Neurog: Actual Quest., 2015a, vol. 3, nos. 2–3, pp. 12–18.Google Scholar
  16. 16.
    Pushchina, E.V., Shukla, S., and Varaksin, A.A., Hydrogen sulfide in proliferating and differentiated cells in primary cultures of juvenile brain of masu salmon Oncorhynchus masou, Adv. Biosci. Biotechnol., 2015b, vol. 6, pp. 539–545.CrossRefGoogle Scholar
  17. 17.
    Pushchina, E.V., Shukla, S., and Varaksin, A.A., Cell proliferation and differentiation in primary cultures of the juvenile brain of the masu salmon Oncorhynchus masou, Russ. J. Mar. Biol., 2015c, vol. 41, no. 6, pp. 499–502.CrossRefGoogle Scholar
  18. 18.
    Pushchina, E.V., Varaksin, A.A., and Obukhov, D.K., Reparative neurogenesis in the brain and changes in the optic nerve of adult trout Oncorhynchus mykiss after mechanical damage of the eye, Russ. J. Dev. Biol., 2016a, vol. 47, no. 1, pp. 11–32.CrossRefGoogle Scholar
  19. 19.
    Pushchina, E.V., Shukla, S., Varaksin, A.A., and Obu-khov, D.K., Cell proliferation and apoptosis in optic nerve and brain integration centers of adult trout Oncorhynchus mykiss after optic nerve injury, Neural Regen. Res., 2016b, vol. 11, pp. 578–590.CrossRefGoogle Scholar
  20. 20.
    Pushchina, E.V., Varaksin, A.A., Obukhov, D.K., and Shukla, S., The Neurochemical Organization and Adult Neurogenesis in the Masu Salmon Oncorhynchus masou Brain, New York: Nova Science Publ., Inc., 2017a.Google Scholar
  21. 21.
    Pushchina, E.V., Zharikova, E.I., and Varaksin, A.A., Persistent and reparative neurogenesis in the juvenile masu salmon Oncorhynchus masou telencephalon after mecha-nical injury, Russ. J. Dev. Biol., 2017b, vol. 48, no. 5, pp. 307–320.CrossRefGoogle Scholar
  22. 22.
    Pushchina, E.V., Varaksin, A.A., and Obukhov, D.K., The Pax2 and Pax6 transcription factors in the optic nerve and brain of trout Oncorhynchus mykiss after a mechanical eye injury, Russ. J. Dev. Biol., 2018, vol. 49, no. 5, pp. 264–290.CrossRefGoogle Scholar
  23. 23.
    Sodha, N.R. and Sellke, F.W., Attenuation of inflammatory responses by hydrogen sulfide (H2S) in ischemia/reperfusion injury, Methods Enzymol., 2015, vol. 555, pp. 127–144.CrossRefGoogle Scholar
  24. 24.
    Ugrumov, M.V., Non-dopaminergic neurons partly expressing dopaminergic phenotype: distribution in the brain, development and functional significance, J. Chem. Neuroanat., 2009, vol. 38, pp. 241–256.CrossRefGoogle Scholar
  25. 25.
    Ugrumov, M.V., Developing brain as an endocrine organ: a paradoxical reality, Neurochem. Res., 2010, vol. 35, pp. 837–850.CrossRefGoogle Scholar
  26. 26.
    Wang, R., Physiological implication of hydrogen sulfide: a whiff exploration that blossomed, Physiol. Rev., 2012, vol. 92, pp. 791–896.CrossRefGoogle Scholar
  27. 27.
    Wang, J.F., Li, Y., Song, J.N., and Pang, H.G., Role of hydrogen sulfide in secondary neuronal injury, Neurochem. Int., 2014, vol. 64, pp. 37–47.CrossRefGoogle Scholar
  28. 28.
    Wu, D., Wang, J., Li, H., Xue, M., Ji, A., and Li, Y., Role of hydrogen sulfide in ischemia-reperfusion injury, Oxid. Med. Cell. Longev., 2015.
  29. 29.
    Zhang, X. and Bian, J.S., Hydrogen sulfide: a neuromodulator and neuroprotectant in the central nervous system, ACS Chem. Neurosci., 2014, vol. 5, pp. 876–883.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • E. V. Pushchina
    • 1
    • 2
    Email author
  • A. A. Varaksin
    • 1
  • D. K. Obukhov
    • 3
  1. 1.National Scientific Center of Marine Biology, Far East Branch, Russian Academy of SciencesVladivostokRussia
  2. 2.Bogomoletz Institute of Physiology, National Academy of Sciences of UkraineKyivUkraine
  3. 3.St. Petersburg UniversitySt. PetersburgRussia

Personalised recommendations