Advertisement

Russian Journal of Developmental Biology

, Volume 49, Issue 6, pp 370–380 | Cite as

Use of Antimicrobial Peptides Secreted by Trichoderma Micromycetes to Stimulate Embryogenic Cultures of Larix sibirica

  • I. N. TretyakovaEmail author
  • M. E. Park
  • A. A. Baranova
  • I. A. Lisetskaya
  • A. S. Shuklina
  • E. A. Rogozhin
  • V. S. Sadykova
DEVELOPMENTAL BIOLOGY OF PLANTS

Abstract

In vitro cultivation of embryogenic cultures of Siberian larch on AI medium supplemented with different concentrations of antimicrobial peptides of two Trichoderma species, T. citrinoviride (strain TYVI 4/11) and T. viride (strain 346), has been performed to achieve a direct antimicrobial effect and initiate the mechanisms of induced resistance (regulatory function of embryogenic cultures) as well as to study the morphogenesis and growth activity of regenerant plants. The experiment was arranged using four cell lines, CL4, CL5, CL6, and CL12, differing in their embryogenic activity. The effect of treatment of cell cultures with Trichoderma peptides was manifested via significant growth stimulation of proliferating embryogenic cell lines, root growth stimulation, and formation of callus excrescences on regenerant plants. No difference between the treated and untreated variants was observed in seedlings. Conceivably, such peptide treatment may provide an increased immunity of soil-grown seedlings in forest nurseries. Study of the effect of biocontrol strains’ use in a plantation reforestation to stimulate the growth and development of calluses and embryos and to obtain disease-resistant regenerant plants of conifer species will provide the development of a clonal silviculture, a new trend that recently appeared abroad (Park 2002, 2014).

Keywords:

Larix sibirica embryo suspension mass Trichoderma antimicrobial peptides 

Notes

ACKNOWLEDGMENTS

The study was financially supported by the Russian Foundation for Basic Research, the Government of Krasnoyarsk krai, and the Krasnoyarsk Regional Science Foundation (project nos. 16-44-240509 and 18-44-243004).

REFERENCES

  1. 1.
    Djonovic, S., Pozo, M.J., Dangott, L.J., Howell, C.R., and Kenerley, C.M., Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance, Mol. Plant Microbe Interact., 2006, vol. 19, pp. 838–853.CrossRefGoogle Scholar
  2. 2.
    Gromovykh, T.I., Sadykova, V.S., and Alimova, F.K., Mikromitsety roda Trichoderma Pers.: Nauchnoe obosnovanie ispol’zovaniya v tekhnologiyakh agropromyshlennogo kompleksa (Micromycetes of the Genus Trichoderma Pers.: Scientific Substantiation of Use in Agroindustrial Complex Technologies), Rogov, I.A., Ed., Moscow: Izdat.-Poligraf. Tsentr MGUPP, 2014. ISBN 978-5-9920-0227-0.Google Scholar
  3. 3.
    Kruglova, N.N., Egorova, O.V., Seldimirova, D.Yu., et al., Svetovoi mikroskop kak instrument v biotekhnologii rastenii (Light Microscope As a Tool in Plant Biotechnology), Ufa: Gilem, Bashkirskaya Entsiklopediya, 2013.Google Scholar
  4. 4.
    Lakin, G.F., Biometriya (Biometrics), Moscow: Vysshaya Shkola, 1973.Google Scholar
  5. 5.
    Pak, M.E., Ivanitskaya, A.S., Dvoinina, L.M., and Tret’yakova, I.N., Embryogenic potential of long-term proliferating Larix sibirica cell lines in vitro, Sib. Lesn. Zh., 2016, no. 1, pp. 27–38.Google Scholar
  6. 6.
    Park, Y.-S., Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations, Ann. For. Sci., 2002, vol. 59, pp. 651–656.CrossRefGoogle Scholar
  7. 7.
    Park, Y.-S., Lelu-Walter, M.A., Harvengt, L., Trontin, J.F., MacEacheron, I., Klimaszewska, K. and Bonga, J.M., Ion of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France, Plant Cell Tissue Organ Cult., 2006, vol. 86, pp. 87–101.CrossRefGoogle Scholar
  8. 8.
    Park, Y.-S., Bonga, J., McCartney, A., and Adams, G., Integration of tree biotechnologies into multivarietal forestry, in Proc. Third Int. Conf. IUFRO Unit 2.09.02 on Woody Plant Production Integrating Genetic and Vegetative Propagation Technologies, Vitoria–Gasteiz, Spain, 2014, pp. 95–97.Google Scholar
  9. 9.
    Park Y.-S., Beaulieu J., Bousquet J. Multi-varietal forestry integrating genomic selection and somatic embryogenesis, in Vegetative Propagation of Forest Trees, Park, Y.-S., Bonga, J.M., and Moon, H.-K., Eds., Seoul: National Institute of Forest Science (NiFos), 2016, pp. 302–322.Google Scholar
  10. 10.
    Sadykova, V.S., Kurakov, A.V., and Kuvarina, A.E., Micromycete Trichoderma citrinoviride Bissett strain VKPM F-1228, producer of membrane-active antibiotics peptaibols with antifungal and antibacterial activity, RF Patent no. 2564577, 2015a.Google Scholar
  11. 11.
    Sadykova, V.S., Kurakov, A.V., Korshun, V.A., Rogozhin, E.A., Gromovykh, T.I., Kuvarina, A.E., and Baranova, A.A., Antimicrobial activity of T. citrinoviride strain VKPM F-1228: optimization of laboratory cultivation and the range of action of individual peptaibols, Antibiot. Khimioter., 2015b, nos. 11–12, pp. 34–42.Google Scholar
  12. 12.
    Tretyakova, I.N., A method for micropropagation of Siberian larch in culture in vitro by somatic embryogenesis in AI medium for plantation forest cultivation, RF Patent no. RU 2456344 C2, Moscow: Federal’naya sluzhba po intellektual’noi sobstvennosti, 2012.Google Scholar
  13. 13.
    www.freepatent.ru/images/patents/5/2456344/patent-2456344.pdf.Google Scholar
  14. 14.
    Tretyakova, I.N., Embryogenic cell lines and somatic embryogenesis in an vitro culture of Siberian larch, Dokl. Biol. Sci., 2013, vol. 450, pp. 139–141.CrossRefGoogle Scholar
  15. 15.
    Tretyakova, I.N., Sadykova, V.S., Noskova, N.E., Bondar’, P.N., Gaidasheva, I.I., Gromovykh, T.I., Ivanitskaya, A.S., Izhboldina, M.V., and Barsukova, A.V., Growth-stimulating activity of strains of the genus Streptomyces lateritius and Trichoderma and the prospects of their use for micropropagation of conifers, Biotekhnologiya, 2009, no. 1, pp. 39–41.Google Scholar
  16. 16.
    Tretyakova, I.N., Pak, M.E., Ivanitskaya, A.S., and Oreshkova, N.V., Peculiarities of somatic embryogenesis of long-term proliferating embryogenic cell lines of Larix sibirica in vitro, Russ. J. Plant Physiol., 2016, vol. 63, no. 6, pp. 800–810.CrossRefGoogle Scholar
  17. 17.
    Tretyakova, I., Ivanitskaja, A., and Pak, M., Somatic embryogenesis in culture in vitro of larix sibirica, Int. J. Plant Reprod. Biol., 2017, vol. 9, no. 2, pp. 93–100.Google Scholar
  18. 18.
    Viterbo, A.M., Shoresh, Y., Brotman, Y., and Chet, I., Towards understanding the molecular basis for induced resistance in the Trichoderma–plant interaction, in Proceedings of the Ninth International Workshop on Trichoderma and Gliocladium, Vienna, Austria, April 2006, KS6, pp. 6–8.Google Scholar
  19. 19.
    Woo, S.L., Lorito, M., Vurro, M., and Gressel, J., Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol, in Novel Biotechnologies for Biocontrol Agent Enhancement and Management, Amsterdam, the Netherlands: IOS, Springer Press, 2007, pp. 107–130.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • I. N. Tretyakova
    • 1
    Email author
  • M. E. Park
    • 1
  • A. A. Baranova
    • 2
  • I. A. Lisetskaya
    • 3
  • A. S. Shuklina
    • 1
  • E. A. Rogozhin
    • 2
    • 4
  • V. S. Sadykova
    • 2
  1. 1.Sukachev Institute of the Forest, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Gauze Institute of New AntibioticsMoscowRussia
  3. 3.Siberian Federal UniversityKrasnoyarskRussia
  4. 4.Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations