Advertisement

Russian Journal of Developmental Biology

, Volume 49, Issue 5, pp 245–259 | Cite as

Callusogenesis as an in vitro Morphogenesis Pathway in Cereals

  • N. N. Kruglova
  • G. E. Titova
  • O. A. Seldimirova
Reviews
  • 9 Downloads

Abstract

Callus is an integrated system formed both exogenously (as a result of proliferation of surface cells of different plant tissues) and endogenously (deep in tissues). Initially, callus consists of homogeneous cells gradually transforming into a system of groups of heterogeneous cells with species-specific morphogenetic potencies, which are realized via various pathways of morphogenesis. In this review, issues associated with studying the formation of calli in in vitro cultures of immature anthers and embryos of cultivated cereals are analyzed. Distinguishing the critical stages of callusogenesis is proposed. The features of hemmorhizogenesis in vitro as a type of organogenesis in calli are considered. The concept of the versatility of the processes of plant morphogenesis in vivo, in situ, and in vitro proposed by T.B. Batygina (1987, 1999, 2012, 2014) is confirmed. The prospects of the approach to calli as model systems for studying various problems of plant developmental biology are discussed.

Keywords

cultivated cereals anther embryo callus morphogenesis in vitro 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Almeida, W.A.B., de Mourao, F.F., Mendes, B.M.J., et al., Histological characterization of in vitro adventitious organogenesis in citrus sinensis, Biol. Plant., 2006, vol. 50, no. 3, pp. 321–325.CrossRefGoogle Scholar
  2. Ashapkin, V.V., Kutueva, L.I., and Vanyushin, B.F., Epigenetic variability in plants: heritability, adaptability, evolutionary significance, Russ. J. Plant Physiol., 2016, vol. 63, no. 2, pp. 181–192.CrossRefGoogle Scholar
  3. Barlou, P.U., Cell division in the meristems and the significance of this process for organogenesis and morphogenesis in plants, Ontogenez, 1994, vol. 25, no. 5, pp. 5–27.Google Scholar
  4. Batygina, T.B., Khlebnoe zerno: atlas (Bread Grain: An Atlas), Leningrad: Nauka, 1987.Google Scholar
  5. Batygina, T.B., Embryogenesis and morphogenesis of zygotic and somatic embryos, Russ. J. Plant Physiol., 1999, vol. 46, no. 6, pp. 774–778.Google Scholar
  6. Batygina, T.B., Reproduction, propagation, and renewal of plants, in Embriologiya tsvetkovykh rastenii. Terminologiya i kontseptsii (Embryology of Flowering Plants: Terminology and Concepts), vol. 3: Sistemy reproduktsii (Reproduction Systems), Batygina, T.B., Ed., St. Petersburg: Mir i sem’ya, 2000, pp. 35–39.Google Scholar
  7. Batygina, T.B., Sexual and asexual processes in reproductive systems of flowering plants, Acta Biol. Cracov. Ser. Bot., 2005, vol. 47, no. 1, pp. 51–60.Google Scholar
  8. Batygina, T.B., Stem cells and morphogenetic developmental programs in plants, Stem Cell Res. J., 2011, vol. 3, nos. 1–2, pp. 45–120.Google Scholar
  9. Batygina, T.B., Integrity and reliability system in ontogenesis and evolution, Int. J. Plant Reprod. Biol., 2012, vol. 4, no. 2, pp. 107–120.Google Scholar
  10. Batygina, T.B., Biologiya razvitiya rastenii. Simfoniya zhizni (Developmental Biology of Plants: A Symphony of Life), St. Petersburg: DEAN, 2014.Google Scholar
  11. Batygina, T.B. and Osadchii, Ya.V., Detection of the homology of the cellular elements of reproductive and morphogenetic structures, Usp. Sovrem. Biol., 2015, vol. 135, no. 4, pp. 337–345.Google Scholar
  12. Batygina, T.B. and Rudskii, I.V., Role of stem cells in plant morphogenesis, Dokl. Biol. Sci., 2006, vol. 410, pp. 400–402.PubMedCrossRefGoogle Scholar
  13. Batygina, T.B. and Vasilyeva, V.E., Periodization of development of reproductive structures. Critical periods, Acta Biol. Cracov. Ser. Bot., 2003, vol. 45, no. 1, pp. 27–36.Google Scholar
  14. Batygina, T.B., Vasil’eva, V.E., and Mamet’eva, T.B., Problems of morphogenesis in vivo and in vitro (embryogenesis in angiosperms), Bot. Zh., 1978, vol. 63, no. 1, pp. 87–111.Google Scholar
  15. Batygina, T.B., Kruglova, N.N., Gorbunova, V.Yu., et al., Ot mikrospory–k sortu (From Microspore to Cultivar), Moscow: Nauka, 2010.Google Scholar
  16. Beloussov, L.V., Biologicheskii morfogenez (Biological Morphogenesis), Moscow: Mosk. Gos. Univ., 1987.Google Scholar
  17. Beloussov, L.V., On the origin of novelty in the evolution and ontogeny, Zh. Obshch. Biol., 1990, vol. 51, no. 1, pp. 107–115.Google Scholar
  18. Bertalanfi, L., General systems theory: a critical review, in Issledovaniya po obshchei teorii sistem (Research on the General Systems Theory), Moscow: Progress, 1969, pp. 23–82.Google Scholar
  19. Bevitori, R., Popielarska-Konieczna, M., dos Santos, E.M., et al., Morpho-anatomical characterization of mature embryo-derived callus of rice (Oryza sativa L.) suitable for transformation, Protoplasma, 2014, vol. 251, no. 5, pp. 545–554.PubMedGoogle Scholar
  20. Bishimbaeva, N.K., Cytophysiological bases of biotechnology of continuous regeneration of plants in cereal tissue culture, Extended Abstract of Doctoral (Biol.) Dissertation, Almaty, 2007.Google Scholar
  21. Butenko, R.G., Kul’tura izolirovannykh tkanei i fiziologiya morfogeneza rastenii (Isolated Tissue Culture and Plant Morphogenesis Physiology), Moscow: Nauka, 1964.Google Scholar
  22. Butenko, R.G., Cellular and molecular aspects of plant morphogenesis in vitro, in I Chailakhyanovskie chteniya (I Chailakhyan Lectures), Pushchino: Pushch. Nauchn. Tsentr, 1994, pp. 7–26.Google Scholar
  23. Bykova, E.A., Chergintsev, D.A., Vlasova, T.A., and Chub, V.V., Effect of the auxin polar transport inhibitor on the morphogenesis of leaves and generative structures during fasciation in Arabidopsis thaliana (L.) Heynh., Russ. J. Dev. Biol., 2016, vol. 47, no. 4, pp. 207–215.CrossRefGoogle Scholar
  24. Bystrova, E.I., Zhukovskaya, N.V., Rakitin, V.Yu., and Ivanov, V.B., Role of ethylene in activation of cell division in quiescent center of excised maize roots, Russ. J. Dev. Biol., 2015, vol. 46, no. 2, pp. 60–64.CrossRefGoogle Scholar
  25. Chaum, S., Srianan, B., Pichakum, A., et al., An efficient procedure for embryogenic callus induction and double haploid plant regeneration through anther culture of Thai aromatic rice (Oryza sativa L. subsp. indica), InVitro Cell Dev. Biol. Plant., 2009, vol. 45, pp. 171–179.CrossRefGoogle Scholar
  26. Che, P., Lall, S., Nettleton, D., and Howell, S.H., Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture, Plant Physiol., 2006, vol. 141, no. 2, pp. 620–637.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cheng, Z.J., Wang, L., Sun, W., et al., Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3, Plant Physiol., 2013, vol. 161, no. 1, pp. 240–251.PubMedCrossRefGoogle Scholar
  28. Choob, V.V., Rol’ pozitsionnoi informatsii v regulyatsii razvitiya organov tsvetka i listovykh serii pobegov (The Role of Positional Information in the Regulation of the Development of Flower Organs and Leaf Serial Shoots), Moscow: Binom, 2010.Google Scholar
  29. Choob, V.V. and Sinyushin, A.A., Flower and shoot fasciation: from phenomenology to the construction of models of apical meristem transformations, Russ. J. Plant Physiol., 2012, vol. 59, no. 4, pp. 530–545.CrossRefGoogle Scholar
  30. Colebrook, E.H., Thomas, S.G., Phillips, A.L., et al., The role of gibberellin signalling in plant responses to abiotic stress, J. Exp. Biol., 2014, vol. 217, pp. 67–75.PubMedCrossRefGoogle Scholar
  31. Delporte, F., Pretova, A., du Jardin, P., et al., Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat, Protoplasma, 2014, vol. 251, no. 6, pp. 1455–1470.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dodueva, I.E., Tvorogova, V.E., Azarakhsh, M., et al., Plant stem cells: the unity and diversity, Vavilov. Zh. Genet. Selekts., 2016, vol. 20, no. 4, pp. 441–458.Google Scholar
  33. Doubled Haploidy in Model and Recalcitrant Species, Segui-Simarro, J.M., Ed., Lausanne: Frontiers Media, 2016.Google Scholar
  34. Dubrovna, O.V. and Bavol, A.V., Variability of the wheat genome during in vitro culture, Cytol. Genet., 2011, vol. 45, no. 5, pp. 333–340.CrossRefGoogle Scholar
  35. Ebrahimie, E., Naghavi, M.R., Hosseinzadeh, A., et al., Induction and comparison of different in vitro morphogenesis pathways using embryo of cumin (Cuminum cyminum L.) as a model material, Plant Cell, Tiss. Org. Cult., 2007, vol. 90, no. 3, pp. 293–311.CrossRefGoogle Scholar
  36. Elhiti, M. and Stasolla, C., The use of zygotic embryos as explants for in vitro propagation: an overview, in Plant Embryo Culture: Methods and Protocols, Thorpe, T.A. and Yeung, E.C., Eds., New York: Humana Press, 2011, pp. 229–255.Google Scholar
  37. Ellis, M., Egelund, J., Schultz, C.J., and Bacic, A., Arabinogalactan-proteins: key regulators at the cell surface?, Plant Physiol., 2010, vol. 153, no. 2, pp. 403–419.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ermakov, I.P. and Matveeva, N.P., Pollen dimorphism and androgenesis in antheral and microspore culture, Vestn. Mosk. Univ., Ser. 16: Biol., 1986, no. 3, pp. 28–40.Google Scholar
  39. Evseeva, N.V., Tkachenko, O.V., Lobachev, Yu.V., et al., Biochemical evaluation of the morphogenetic potential of wheat callus cells in vitro, Russ. J. Plant Physiol., 2007, vol. 54, no. 2, pp. 273–286.CrossRefGoogle Scholar
  40. Ezhova, T.A., Genetic control of morphogenesis and plant tolerance to stressors, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow, 2003.Google Scholar
  41. Gilbert, S.F., Developmental Biology, Sunderland, MA: Sinauer Associates, 1988, vol. 3, 2nd ed.Google Scholar
  42. Gorbunova, V.Yu., Kruglova, N.N., and Abramov, S.N., The induction of androgenesis in vitro in spring soft wheat. Balance of exogenous and endogenous phytohormones, Biol. Bull. (Moscow), 2001, vol. 28, no. 1, pp. 25–30.CrossRefGoogle Scholar
  43. Gutierrez, R.A., Shasha, D.E., and Coruzzi, G.M., Systems biology for the virtual plant, Plant Physiol., 2005, vol. 138, pp. 550–554.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hisano, H., Matsuura, T., Mori, I.C., et al., Endogenous hormone levels affect the regeneration ability of callus derived from different organs in barley, Plant Physiol. Biochem., 2016, vol. 99, pp. 66–72.PubMedCrossRefGoogle Scholar
  45. Huang, W.-L., Lee, Ch.-H., and Chen, Y.-R., Levels of endogenous abscisic acid and indole-3-acetic acid influence shoot organogenesis in callus cultures of rice subjected to osmotic stress, Plant Cell. Tiss. Org. Cult., 2012, vol. 108, no. 2, pp. 257–263.CrossRefGoogle Scholar
  46. Ikeuchi, M., Sugimoto, K., and Iwase, A., Plant callus: mechanisms of induction and repression, Plant Cell, 2013, vol. 25, pp. 3159–3173.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ikeuchi, M., Iwase, A., and Sugimoto, K., Control of plant cell differentiation by histone modification and DNA methylation, Curr. Opin. Plant Biol., 2015, vol. 28, pp. 60–67.PubMedCrossRefGoogle Scholar
  48. Isaeva, V.V., Kletki v morfogeneze (Cells in Morphogenesis), Moscow: Nauka, 1994.Google Scholar
  49. Isaeva, V.V., Self-organization in biological systems, Biol. Bull. (Moscow), 2012, vol. 39, no. 2, pp. 110–118.CrossRefGoogle Scholar
  50. Ivanov, V.B., The problem of stem cells in plants, Russ. J. Dev. Biol., 2003, vol. 34, no. 4, pp. 205–212.CrossRefGoogle Scholar
  51. Ivanov, V.B., Stem cells in the root and the problem of stem cells in plants, Russ. J. Dev. Biol., 2007, vol. 38, no. 6, pp. 338–349.CrossRefGoogle Scholar
  52. Ivanov, V.B., Kletochnye mekhanizmy rosta rastenii (Cellular Mechanisms of Plant Growth), Moscow: Nauka, 2011.Google Scholar
  53. Jaeger, J., Irons, D., and Monk, N., Regulative feedback in pattern formation: towards a general relativistic theory of positional information, Development, 2008, vol. 135, no. 19, pp. 3175–3183.PubMedCrossRefGoogle Scholar
  54. Jaligot, E., Rival, A., Beule, T., et al., Somaclonal variation in oil palm (Elaeis guineensis Jacq.): the DNA methylation hypothesis, Plant Cell Rep., 2000, vol. 19, pp. 684–690.CrossRefGoogle Scholar
  55. Konieczny, R., Swierczynska, J., Czaplicki, A.Z., and Bohdanowicz, J., Distribution of pectin and arabinogalactan protein epitopes during organogenesis from androgenic callus of wheat, Plant Cell Rep., 2007, vol. 26, no. 3, pp. 355–363.PubMedCrossRefGoogle Scholar
  56. Korochkin, L.I., Biologiya individual’nogo razvitiya (Biology of Individual Development), Moscow: Mosk. Gos. Univ., 2002.Google Scholar
  57. Kruglova, N.N., Cereal microspore as a model system to study pathways of morphogenesis, Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg, 2002.Google Scholar
  58. Kruglova, N.N., Periodization of wheat embryogenesis as a methodological aspect of biotechnological developments, Izv. Ufimsk. Nauchn. Tsentra, Ross. Akad. Nauk, 2012, no. 2, pp. 21–24.Google Scholar
  59. Kruglova, N.N. and Batygina, T.B., Stress as a factor inducing androcliny in cereals: a competent object of stress, Usp. Sovrem. Biol., 2001, vol. 121, no. 1, pp. 67–78.Google Scholar
  60. Kruglova, N.N. and Katasonova, A.A., Immature wheat embryo as a morphogenetically competent explant, Fiziol. Biokhim. Kul’t. Rast., 2009, vol. 41, no. 2, pp. 124–131.Google Scholar
  61. Kruglova, N.N. and Seldimirova, O.A., Morphogenesis in androcline calli of cereals: cytohistological features, Usp. Sovrem. Biol., 2010, vol. 130, no. 3, pp. 247–257.Google Scholar
  62. Kruglova, N.N. and Seldimirova, O.A., Regeneratsiya pshenitsy in vitro i ex vitro: tsito-gistologicheskie aspekty (Wheat Regeneration in vitro and ex vitro: Cytohistological Aspects), Ufa: Gilem, 2011.Google Scholar
  63. Kruglova, N.N. and Seldimirova, O.A., In vitro morphogenesis pathways of wheat androcline callus cells, Fiziol. Rast. Genet., 2013, vol. 45, no. 5, pp. 382–389.Google Scholar
  64. Kruglova, N.N., Gorbunova, V.Yu., Abramov, S.N., et al., Wheat androgenic embryoids and calli: data of scanning electron microscopy, Biol. Bull. (Moscow), 2001, vol. 28, no. 2, pp. 150–156.CrossRefGoogle Scholar
  65. Kruglova, N.N., Batygina, T.B., Gorbunova, V.Yu., et al., Embriologicheskie osnovy androklinii pshenitsy (Embryological Basics of Wheat Androcliny), Moscow: Nauka, 2005.Google Scholar
  66. Kumar, V., Systems biology approaches towards the prediction of prospective novel plant system-derived products or services, Biol. Syst. Open Access, 2013, vol. 2, no. 4, p. 119. doi 10.4172/2329-6577.100011.CrossRefGoogle Scholar
  67. Kunakh, V.A., Plant genome variation in the course of in vitro dedifferentiation and callus formation, Russ. J. Plant Physiol., 1999, vol. 46, no. 6, pp. 808–817.Google Scholar
  68. Kurdyukov, S., Song, Y., Sheahan, M.B., et al., Transcriptional regulation of early embryo development in the model legume Medicago truncatula, Plant Cell Rep., 2014, vol. 33, no. 2, pp. 349–362.PubMedCrossRefGoogle Scholar
  69. Lee, S.-T. and Huang, W.-L., Cytokinin, auxin, and abscisic acid affects sucrose metabolism conduce to de novo shoot organogenesis in rice (Oryza sativa L.) callus, Bot. Stud., 2013, vol. 54, no. 5. http://www.asbotanicalstudies. com/content/54/1/5.Google Scholar
  70. Lutova, L.A., Ezhova, T.A., Dodueva, I.E., and Osipova, M.A., Genetika razvitiya rastenii (Plant Developmental Genetics), Inge-Vechtomov, S.G., Ed., St. Petersburg: Izd. N-L, 2010.Google Scholar
  71. Marchenko, A.O., Realization of the morphogenetic potential of plants, Usp. Sovrem. Biol., 1996, vol. 116, no. 3, pp. 306–319.Google Scholar
  72. Marzec, M. and Kurczynska, E., Importance of symplasmic communication in cell differentiation, Plant Signal. Behav., 2014, vol. 9. e27931. http://dx.doi.org/10.4161/psb.27931tt.Google Scholar
  73. Medvedev, S.S., Mechanisms and physiological role of polarity in plants, Russ. J. Plant Physiol., 2012, vol. 59, no. 4, pp. 502–514.CrossRefGoogle Scholar
  74. Medvedev, S.S., Systems biology of plants, in Materialy V mezhdunarodnoi shkoly dlya molodykh uchenykh, posvyashchennoi pamyati T.B. Batyginoi (Proc. V Int. School for Young Scientists in Memory of T.B. Batygina), St. Petersburg, 2016, p. 130.Google Scholar
  75. Medvedev, S.S. and Sharova, E.I., Genetic and epigenetic regulation of plant development (a review), Zh. Sib. Fed. Univ., Ser. Biol., 2010, no. 3, pp. 109–129.Google Scholar
  76. Meristematic Tissues in Plant Growth and Development, McManus, M.T. and Veit, B., Eds., Sheffield: Sheffield Acad. Press, 2002.Google Scholar
  77. Merks, R.M.H. and Guravage, M.A., Building simulation models of developing plant organs, in Plant Organogenesis: Methods and Protocols, De Smet, I., Ed., Methods in Molecular Biology, New York: Springer Science + Business Media, 2013, vol. 959, pp. 333–352.CrossRefGoogle Scholar
  78. Miroshnichenko, D.N., Sokolov, R.N., Alikina, O.V., et al., Screening of the regeneration potential of di-, tetra-, and hexaploid wheat varieties and species in culture in vitro, Biotekhnologiya, 2014, no. 1, pp. 38–51.Google Scholar
  79. Mohd Din, A.R.J., Ahmad, F.I., Wagiran, A., et al., Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas), Saudi J. Biol. Sci., 2016, vol. 23, no. 1 (suppl.), pp. 69–77.Google Scholar
  80. Narciso, J.O. and Hattori, K., Genotypic differences in morphology and ultrastructures of callus derived from selected rice varieties, Philippine Sci. Lett., 2010, vol. 3, no. 1, pp. 59–65.Google Scholar
  81. Nosov, A.M., Plant cell culture: unique system, model, and tool, Russ. J. Plant Physiol., 1999, vol. 46, no. 6, pp. 731–738.Google Scholar
  82. Oliveira, E.J., Koehler, A.D., Rocha, D.I., et al., Morphohistological, histochemical, and molecular evidences related to cellular reprogramming during somatic embryogenesis of the model grass Brachypodium distachyon, Protoplasma, 2017, vol. 254, no. 5, pp. 2017–2034.PubMedCrossRefGoogle Scholar
  83. Parra-Vega, V., Renau-Morata, B., Sifres, A., et al., Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.), Plant Cell Tiss. Org. Cult., 2013, vol. 112, no. 3, pp. 353–360.CrossRefGoogle Scholar
  84. Patwari, P. and Lee, R.T., Mechanical control of tissue morphogenesis, Circ. Res., 2008, vol. 103, no. 3, pp. 234–243.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rębilas, K. and Rębilas, A., Auxin concentration control of the average DNA content in cells of in vitro cultures: a theoretical model and comparison to experimental data for Allium cepa and Alium sativum, Plant Cell, Tiss. Org. Cult., 2008, vol. 95, no. 1, pp. 89–99.CrossRefGoogle Scholar
  86. Savona, M., Mattioli, R., Nigro, S., et al., Two SERK genes are markers of pluripotency in Cyclamen persicum Mill., J. Exp. Bot., 2012, vol. 63, no. 1, pp. 471–488.PubMedCrossRefGoogle Scholar
  87. Segui-Simarro, J.M., Androgenesis revisited, Bot. Rev., 2010, vol. 76, pp. 377–404.CrossRefGoogle Scholar
  88. Seldimirova, O.A. and Kruglova, N.N., Properties of the initial stages of embryoidogenesis in vitro in wheat calli of various origin, Biol. Bull. (Moscow), 2013, vol. 40, no. 5, pp. 447–454.CrossRefGoogle Scholar
  89. Seldimirova, O.A. and Kruglova, N.N., Androcline embryogenesis in vitro in cereals, Usp. Sovrem. Biol., 2014, vol. 134, no. 5, pp. 476–487.Google Scholar
  90. Seldimirova, O.A. and Kruglova, N.N., The balance of endogenous and exogenous hormones and the pathways of morphogenesis in wheat androcline calli in vitro, Izv. Ufimsk. Nauchn. Tsentra, Ross. Akad. Nauk, 2015, no. 1, pp. 33–39.Google Scholar
  91. Seldimirova, O.A., Katasonova, A.A., and Kruglova, N.N., Morphogenetic focus formation as the initial stage of in vitro morphogenesis in wheat calli of various origin, Fiziol. Biokhim. Kul’t. Rast., 2011, vol. 43, no. 4, pp. 297–306.Google Scholar
  92. Seldimirova, O.A., Titova, G.E., and Kruglova, N.N., A complex morpho-histological approach to the in vitro study of morphogenic structures in a wheat anther culture, Biol. Bull. (Moscow), 2016a, vol. 43, no. 2, pp. 121–126.Google Scholar
  93. Seldimirova, O.A., Kudoyarova, G.R., Kruglova, N.N., et al., Changes in distribution of cytokinins and auxins in cell during callus induction and organogenesis in vitro in immature embryo culture of wheat, In Vitro Cell Dev. Biol. Plant, 2016b, vol. 52, no. 3, pp. 251–264.Google Scholar
  94. Seldimirova, O.A., Galin, I.R., Kruglova, N.N., and Veselov, D.S., Distribution of IAA and ABA in developing wheat embryos in vivo, Izv. Ufimsk. Nauchn. Tsentra, Ross. Akad. Nauk, 2017a, no. 3 (1), pp. 114–118.Google Scholar
  95. Seldimirova, O.A., Kruglova, N.N., Titova, G.E., et al., Comparative ultrastructural analysis of the in vitro microspore embryoids and in vivo zygotic embryos of wheat as a basis for understanding of cytophysiological aspects of their development, Russ. J. Dev. Biol., 2017b, vol. 48, vol. 3, pp. 185–197.CrossRefGoogle Scholar
  96. Sinnot, E., Morfogenez rastenii (Morphogenesis of Plants), Moscow: Izd. Inostr. Lit-ry, 1963.Google Scholar
  97. Slesak, H., Goralski, G., Pawłowska, H., et al., The effect of genotype on a barley scutella culture. Histological aspects, Cent. Eur. J. Biol., 2013, vol. 8, no. 1, pp. 30–37.Google Scholar
  98. Spivak, V.A., Minlikaeva, K.I., Evseeva, N.V., et al., Properties of morphogenesis of structural elements of immature embryos of wheat lines cultured in vitro, Byull. Bot. Sada Sarat. Univ., 2014, no. 12, pp. 188–197.Google Scholar
  99. Sugiyama, M., Historical review of research on plant cell dedifferentiation, J. Plant Res., 2015, vol. 128, no. 5, pp. 349–359.PubMedCrossRefGoogle Scholar
  100. Sun, L., Wu, Y., Zou, H., et al., Comparative proteomic analysis of the H99 inbred maize (Zea mays L.) line in embryogenic and non-embryogenic callus during somatic embryogenesis, Plant Cell Tiss. Org. Cult., 2013, vol. 113, pp. 103–119.CrossRefGoogle Scholar
  101. Svetlov, P.G., The theory of critical periods of development and its importance for understanding the principles of influence of the environment on ontogeny, in Voprosy tsitologii i obshchei fiziologii (Problems of Cytology and General Physiology), Moscow: Akad. Nauk SSSR, 1960, pp. 263–285.Google Scholar
  102. Titova, G.E., Seldimirova, O.A., Kruglova, N.N., et al., Phenomenon of “Siamese embryos” in cereals in vivo and in vitro: cleavage polyembryony and fasciations, Russ. J. Dev. Biol., 2016, vol. 47, no. 3, pp. 122–137.CrossRefGoogle Scholar
  103. Tyagi, N., Dahleen, L.S., and Bregitzer, P., Candidate genes within tissue culture regeneration QTL revisited with a linkage map based on transcript-derived markers, Crop Sci., 2010, vol. 50, no. 5, pp. 1697–1707.CrossRefGoogle Scholar
  104. Urmantsev, Yu.A., Systems approach to the problem of tolerance of plants, Fiziol. Rast, 1979, vol. 26, no. 4, pp. 762–777.Google Scholar
  105. Waddington, K., Morfogenez i genetika (Morphogenesis and Genetics), Moscow: Mir, 1964.Google Scholar
  106. Wang, X., Nolan, K.E., Irwanto, R.R., et al., Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells, Ann. Bot., 2011, vol. 107, pp. 599–609.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wendrich, J.R., Moller, B.K., Uddin, B., et al., A set of domain-specific markers in the Arabidopsis embryo, Plant Reprod., 2015, vol. 28, pp. 153–160.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wolfe, N.W. and Clark, N.L., ERC analysis: web-based inference of gene function via evolutionary rate covariation, Bioinformatics, 2015, vol. 31, no. 23, pp. 3835–3837.PubMedPubMedCentralGoogle Scholar
  109. Wolpert, L., Positional information and the spatial pattern of cellular differentiation, J. Theor. Biol., 1969, vol. 25, no. 1, pp. 1–47.PubMedCrossRefGoogle Scholar
  110. Zhuravlev, Yu.N. and Omel’ko, A.M., Plant morphogenesis in vitro, Russ. J. Plant Physiol., 2008, vol. 55, no. 5, pp. 579–596.CrossRefGoogle Scholar
  111. Zur, I., Dubas, E., Krzewska, M., et al., Current insights into hormonal regulation of microspore embryogenesis. Doubled haploidy in model and recalcitrant species, Front. Plant Sci., 2016, pp. 110–109.Google Scholar
  112. Zuraida, A.R., Naziah, B., Zamri, Z., et al., Efficient plant regeneration of Malaysian indica rice MR 219 and 232 via somatic embryogenesis system, Acta Physiol. Plant., 2011, vol. 33, pp. 1913–1921.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. N. Kruglova
    • 1
  • G. E. Titova
    • 2
    • 3
  • O. A. Seldimirova
    • 1
  1. 1.Ufa Institute of BiologyRussian Academy of SciencesUfaRussia
  2. 2.Komarov Botanical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations