Biology Bulletin

, Volume 46, Issue 3, pp 268–276 | Cite as

The Study of Cognitive-Stimulating Activity of Fluorinated Tetrahydrocarbazole Derivatives and Behavioral Responses in Transgenic Tg6799 Mice with Alzheimer’s Disease

  • N. S. NikolaevaEmail author
  • A. V. Maltsev
  • R. K. Ovchinnikov
  • V. B. Sokolov
  • A. Yu. Aksinenko
  • E. V. Bovina
  • A. S. Kinzirsky


The cognitive-stimulating, neuroprotective effects of promising fluorinated tetrahydrocarbazole derivatives (CA-7043x and CA-7050x) on the hippocampus-dependent memory of outbred mice (CD1) and transgenic Tg6799 mice, as well as their effect on anxiety, locomotor activity, and orienting-exploratory behavior of animals, were studied. It was found that both compounds have a pronounced cognitive-stimulating effect on CD1 mice, but do not show neuroprotective effects on memory support in Tg6799 mice. It is noted that, in the open-field test, the CA-7050x compound has a positive effect on the orientating behavior, and the CA-7043x compound has a positive effect on the exploratory response in the nontransgenic control.



Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Bachurin, S.O., Medical and chemical approaches to directed search for drugs for the treatment and prevention of Alzheimer’s disease, Biomed. Khim., 2001, vol. 47, no. 2, pp. 155–197.Google Scholar
  2. 2.
    Bachurin, S.O., Shelkovnikova, T.A., Ustyugov, A.A., Peters, O., Khritankova, I., Afanasieva, M.A., Tarasova, T.V., Alentov, I.I., Buchman, V.L., and Ninkina, N.N., Dimebon slows progression of proteinopathy in gamma-synuclein transgenic mice, Neurotoxicol. Res., 2012, vol. 22, no. 1, pp. 33–42.CrossRefGoogle Scholar
  3. 3.
    Bachurin, S.O., Sokolov, V.B., Aksinenko, A.Yu., Epishina, T.A., Goreva, T.V., Gabrel’yan, A.V., and Grigor’ev, V.V., Molecular design of multitarget neuroprotectors. 1. Synthesis and biological activity of conjugates of substituted indoles with bis(dimethylamino)phenothiazine, Izv. Akad. Nauk, Ser. Khim., 2015, no. 6, pp. 1354–1361.Google Scholar
  4. 4.
    Barker, G.R. and Warburton, E.C., When is the hippocampus involved in recognition memory?, J. Neurosci., 2011, vol. 31, no. 29, pp. 10721–10731.CrossRefGoogle Scholar
  5. 5.
    Barker, G.R. and Warburton, E.C., Object-in-place associative recognition memory depends on glutamate receptor neurotransmission within two defined hippocampal-cortical circuits: a critical role for AMPA and NMDA receptors in the hippocampus, perirhinal, and prefrontal cortices, Cereb. Cortex, 2015, vol. 25, no. 2, pp. 472–481.CrossRefGoogle Scholar
  6. 6.
    Boinpally, R., Chen, L., Zukin, S.R., McClure, N., Hofbauer, R.K., and Periclou, A., A novel once-daily fixed-dose combination of memantine extended release and donepezil for the treatment of moderate to severe Alzheimer’s disease: two phase I studies in healthy volunteers, Clin. Drug Invest., 2015, vol. 35, no. 7, pp. 427–435.CrossRefGoogle Scholar
  7. 7.
    Carey, A.N., Lyons, A.M., Shay, Ch.F., Dunton, O., and McLaughlin, J.P., Endogenous kappa opioid activation mediates stress-induced deficits in learning and memory, J. Neurosci., 2009, vol. 29, no. 13, pp. 4293–4300.CrossRefGoogle Scholar
  8. 8.
    Clerici, F., Vanacore, N., Elia, A., Spila-Alegiani, S., Pomati, S., Da Cas, R., Raschetti, R., and Mariani, C., Memantine in moderately-severe-to-severe Alzheimer’s disease: a post-marketing surveillance study, Drugs Aging, 2009, vol. 26, no. 4, pp. 321–332.CrossRefGoogle Scholar
  9. 9.
    Doody, R.S., Gavrilova, S.I., Sano, M., Thomas, R.G., Aisen, P.S., Bachurin, S.O., and Hung, D., Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study, Lancet, 2008, vol. 372, no. 9634, pp. 207–215.CrossRefGoogle Scholar
  10. 10.
    Eimer, W.A. and Vassar, R., Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Aβ42 accumulation and caspase-3 activation, Mol. Neurodegener., 2013, vol. 8, pp. 1–12.CrossRefGoogle Scholar
  11. 11.
    Ennaceur, A., One-trial object recognition in rats and mice: methodological and theoretical issues, Behav. Brain Res., 2010, vol. 215, no. 2, pp. 244–254.CrossRefGoogle Scholar
  12. 12.
    Fu, A.K., Hung, K.W., Yuen, M.Y., Zhou, X., Mak, D.S., Chan, I.C., Cheung, T.H., Zhang, B., Fu, W.Y., Liew, F.Y., and Ip, N.Y., IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 19, pp. E2705–E2713.CrossRefGoogle Scholar
  13. 13.
    Goozee, K.G., Shah, T.M., Sohrabi, H.R., Rainey-Smith, S.R., Brown, B., Verdile, G., and Martins, R.N., Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease, Br. J. Nutr., 2016, vol. 115, no. 3, pp. 449–465.CrossRefGoogle Scholar
  14. 14.
    Howard, R., McShane, R., Lindesay, J., Ritchie, C., Baldwin, A., Barber, R., Burns, A., Dening, T., Findlay, D., Holmes, C., Hughes, A., Jacoby, R., Jones, R., Jones, R., McKeith, I., Macharouthu, A., O’Brien, J., Passmore, P., Sheehan, B., Juszczak, E., Katona, C., Hills, R., Knapp, M., Ballard, C., Brown, R., Banerjee, S., Onions, C., Griffin, M., Adams, J., Gray, R., Johnson, T., Bentham, P., and Phillips, P., Donepezil and memantine for moderate-to-severe Alzheimer’s disease, N. Engl. J. Med., 2012, vol. 366, pp. 893–903.CrossRefGoogle Scholar
  15. 15.
    Jawhar, S., Trawicka, A., Jenneckens, C., Bayer, T.A., and Wirths, O., Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5XFAD mouse model of Alzheimer’s disease, Neurobiol. Aging, 2012, vol. 33, no. 1. p. 196. e29–e196. e40.Google Scholar
  16. 16.
    Joyashiki, E., Matsuya, Y., and Tohda, C., Sominone improves memory impairments and increases axonal density in Alzheimer’s disease model mice, 5XFAD, Int. J. Neurosci., 2011, vol. 121, no. 4, pp. 181–190.CrossRefGoogle Scholar
  17. 17.
    Liu, D.S., Pan, X.D., Zhang, J., Shen, H., Collins, N.C., Cole, A.M., Koster, K.P., Ben Aissa, M., Dai, X.M., Zhou, M., Tai, L.M., Zhu, Y.G., La Du, M., and Chen, X.C., APOE4 enhances age-dependent decline in cognitive function by down-regulating an NMDA receptor pathway in EFAD-Tg mice, Mol. Neurodegener., 2015, vol. 10, no. 7, pp. 1–17.CrossRefGoogle Scholar
  18. 18.
    Lonskaya, I., Hebron, M., Chen, W., Schachter, J., and Moussa, C., Tau deletion impairs intracellular β-amyloid-42 clearance and leads to more extracellular plaque deposition in gene transfer models, Mol. Neurodegener., 2014, vol. 9, no. 46, pp. 1–16.CrossRefGoogle Scholar
  19. 19.
    Malatynska, E., Steinbusch, H.W., Redkozubova, O., Bolkunov, A., Kubatiev, A., Yeritsyan, N.B., Vignisse, J., Bachurin, S., and Strekalova, T., Anhedonic-like traits and lack of affective deficits in 18-month-old C57BL/6 mice: implications for modeling elderly depression, Exp. Gerontol., 2012, vol. 47, no. 8, pp. 552–564.CrossRefGoogle Scholar
  20. 20.
    Mancuso, C., Siciliano, R., Barone, E., Butterfield, D.A., and Preziosi, P., Pharmacologists and Alzheimer disease therapy: to boldly go where no scientist has gone before, Exp. Opin. Investig. Drugs, 2011, vol. 20, no. 9, pp. 1243–1261.CrossRefGoogle Scholar
  21. 21.
    Maslikova, G.V., Bui Thi, Minh Thu, and Arlt, A.V., Experimental substantiation of the combined use of sodium selenite and vitamin E in brain ischemia caused by gravitational overload, Klin. Farmakol. Ter., 2009, no. 6, pp. 279–281.Google Scholar
  22. 22.
    Nikolaeva, N.S., Sokolov, V.B., Aksinenko, A.Yu., Ovchinnikov, R.K., Bachurin, S.O., and Kinzirskii, A.S., Psychotropic activity of new fluorinated derivatives of tetrahydrocarbasoles, Bull. Exp. Biol. Med., 2015, vol. 160, no. 4, pp. 455–458.CrossRefGoogle Scholar
  23. 23.
    Nirogi, R.V., Konda, J.B., Kambhampati, R., Shinde, A., Bandyala, T.R., Gudla, P., Kandukuri, K.K., Jayarajan, P., Kandikere, V., and Dubey, P.K., N,N-Dimethyl-[9-(arylsulfonyl)-2,3,4,9-tetrahydro-1H-carbazol-3-yl]amines as novel, potent and selective 5-HT6 receptor antagonists, Bioorg. Med. Chem. Lett., 2012, vol. 22, no. 22, pp. 6980–6985.CrossRefGoogle Scholar
  24. 24.
    Oakley, H., Cole, S.L., Logan, S., Maus, E., Shao, P., Guillozet-Bongaarts, A., Ohno, M., Disterhoft, J., Van Eldik, L., Berry, R., and Vassar, R., Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation, J. Neurosci., 2006, vol. 26, pp. 10129–10140.CrossRefGoogle Scholar
  25. 25.
    Ohno, M., Cole, S.L., Yasvoina, M., Zhao, J., Citron, M., Berry, R., Disterhoft, J.F., and Vassar, R., BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice, Neurobiol. Dis., 2007, vol. 26, no. 1, pp. 134–145.CrossRefGoogle Scholar
  26. 26.
    Peters, O.M., Connor-Robson, N., Sokolov, V.B., Aksinenko, A.Yu., Kukharsky, M.S., Bachurin, S.O., Ninkina, N.N., and Buchman, V.L., Chronic administration of dimebon ameliorates pathology in TauP301S transgenic mice, J. Alzheimer’s Dis., 2013, vol. 33, no. 3, pp. 1041–1049.CrossRefGoogle Scholar
  27. 27.
    Pieper, A.A., Xie, S., Capota, E., Estill, S.J., Zhong, J., Long, J.M., Becker, G.L., Huntington, P., Goldman, S.E., Shen, C.H., Capota, M., Britt, J.K., Kotti, T., Ure, K., Brat, D.J., Williams, N.S., MacMillan, K.S., Naidoo, J., Melito, L., Hsieh, J., De Brabander, J., Ready, J.M., and McKnight, S.L., Discovery of a proneurogenic, neuroprotective chemical, Cell, 2010, vol. 142, no. 1, pp. 39–51.CrossRefGoogle Scholar
  28. 28.
    Réus, G.Z., Valvassori, S.S., Machado, R.A., Martins, M.R., Gavioli, E.C., and Quevedo, J., Acute treatment with low doses of memantine does not impair aversive, non-associative and recognition memory in rats, Naunyn-Schmiedeberg’s Arch. Pharmacol., 2008, vol. 376, no. 5, pp. 295–300.CrossRefGoogle Scholar
  29. 29.
    Schneider, F., Baldauf, K., Wetzel, W., and Reymann, K.G., Behavioral and EEG changes in male 5xFAD mice, Physiol. Behav., 2014, vol. 135, pp. 25–33.CrossRefGoogle Scholar
  30. 30.
    Shukla, V., Zheng, Y.L., Mishra, S.K., Amin, N.D., Steiner, J., Grant, P., Kesavapany, S., and Pant, H.C., A truncated peptide from p35, a Cdk5 activator, prevents Alzheimer’s disease phenotypes in model mice, FASEB J., 2013, vol. 27, no. 1, pp. 174–186.CrossRefGoogle Scholar
  31. 31.
    Sokolov, V.B., Aksinenko, A.Yu., Grigor’ev, V.V., and Bachurin, S.O., Modification of biologically active amines and amides with fluorinated heterocycles. 8. γ-Carbolines modified with 2-(2-trifluoromethylimidazo[1,2-a]pyridine-6-yl)ethyl fragment, Izv. Akad. Nauk, Ser. Khim., 2013, no. 1, pp. 200–202.Google Scholar
  32. 32.
    Sokolov, V.B., Aksinenko, A.Yu., Nikolaeva, N.C., Grigor’ev, V.V., Kinzirskii, A.S., and Bachurin, S.O., Modification of biologically active amines and amides with fluorinated heterocycles. 11. Post Tetrahydrocarbazoles modified with 2-(5-fluoropyridin-3-yl)ethyl fragment, Izv. Akad. Nauk, Ser. Khim., 2014, no. 5, pp. 1137–1142.Google Scholar
  33. 33.
    Sokolov, V.B., Aksinenko, A.Yu., Epishina, T.A., Goreva, T.V., Grigor’ev, V.V., Gabrel’yan, A.V., and Bachurin, S.O., Synthesis and biological activity of N-substituted tetrahydro-γ-carbolines containing the bis(dimethylamino)-phenothiazine fragment, Izv. Akad. Nauk, Ser. Khim., 2015, no. 3, pp. 717–722.Google Scholar
  34. 34.
    Sonkusare, S.K., Kaul, C.L., and Ramarao, P., Dementia of Alzheimer’s disease and other neurodegenerative disorders—memantine, a new hope, Pharmacol. Res., 2005, vol. 1, no. 1, pp. 1–17.CrossRefGoogle Scholar
  35. 35.
    Tu, Q., Zou, Y., Zhang, M., Cao, Y., Yang, W., Yu, W., and Lu, Y., Application status of memantine in patients with dementia in the Chongqing area of Southwest China, J. Clin. Gerontol. Geriatr., 2015, vol. 6, no. 3, pp. 85–88.CrossRefGoogle Scholar
  36. 36.
    Ustyugov, A.A., Shelkovnikova, T.A., Kokhan, V.S., Khritankova, I.V., Peters, O., Buchman, V.L., Bachurin, S.O., and Ninkina, N.N., Dimebon reduces the levels of aggregated amyloidogenic protein forms in detergent-insoluble fractions in vivo, Bull. Exp. Biol. Med., 2012, vol. 152, no. 6, pp. 731–733.CrossRefGoogle Scholar
  37. 37.
    Vignisse, J., Steinbusch, H.W., Bolkunov, A., Nunes, J., Santos, A.I., Grandfils, C., Bachurin, S., and Strekalova, T., Dimebon enhances hippocampus-dependent learning in both appetitive and inhibitory memory tasks in mice, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, vol. 35, no. 2, pp. 510–522.CrossRefGoogle Scholar
  38. 38.
    Wirths, O., Erck, C., Martens, H., Harmeier, A., Geumann, C., Jawhar, S., Kumar, S., Multhaup, G., Walter, J., Ingelsson, M., Degerman-Gunnarsson, M., Kalimo, H., Huitinga, I., Lannfelt, L., and Bayer, T.A., Identification of low molecular weight pyroglutamate Aβ oligomers in Alzheimer’s disease: a novel tool for therapy and diagnosis, J. Biol. Chem., 2010, vol. 285, no. 53, pp. 41517–41524.CrossRefGoogle Scholar
  39. 39.
    Zhang, S., Hedskog, L., Petersen, C.A., Winblad, B., and Ankarcrona, M., Dimebon (latrepirdine) enhances mitochondrial function and protects neuronal cells from death, J. Alzheimers Dis., 2010, vol. 21, no. 2, pp. 389–402.CrossRefGoogle Scholar
  40. 40.
    Zhu, D., Chen, M., Li, M., Luo, B., Zhao, Y., Huang, P., Xue, F., Rapposelli, S., Pi, R., and Wen, S., Discovery of novel N-substituted carbazoles as neuroprotective agents with potent anti-oxidative activity, Eur. J. Med. Chem., 2013, vol. 68, pp. 81–88.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • N. S. Nikolaeva
    • 1
    Email author
  • A. V. Maltsev
    • 1
  • R. K. Ovchinnikov
    • 1
  • V. B. Sokolov
    • 1
  • A. Yu. Aksinenko
    • 1
  • E. V. Bovina
    • 1
  • A. S. Kinzirsky
    • 1
  1. 1.Institute of Physiologically Active Compounds, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations