Biology Bulletin

, Volume 46, Issue 3, pp 284–293 | Cite as

Aquatic Plants as a Factor That Changes Trophic Relations and the Structure of Zooplankton and Microperiphytone Communities

  • S. A. KurbatovaEmail author
  • N. A. Lapteva
  • S. N. Bykova
  • I. Yu. Yershov


The development of bacteria, phytoplankton, zooplankton, and microperiphytic organisms in artificial ecosystems, such as microcosms with aquatic plants, depressing algae (water soldier Stratiotes aloides L.), and plants not possessing a significant impact on them (arrowhead Sagittaria sagittifolia L.), was evaluated. It was shown that the zooplankton biomass did not decrease among water soldiers, despite the fact that the concentration of phytoplankton pigments was 2–3 times lower. The number of euplanktonic Cladocera has not declined, and the number of littoral and phytophilic Cladocera increased, but the number of Diaptomidae was lower. It is assumed that a large zooplankton biomass was produced by the use of bacteria and protozoa as an additional power supply to the algae. The share of zooplanktonic species consuming bacteria increased in microcosms with arrowhead. The number of predators increased and trophic relations between zooplankton and microperiphyton became closer in experimental systems with the plants of both species.



  1. 1.
    Alekin, O.A., Semenov, A.D., and Skopintsev, B.A., Rukovodstvo po khimicheskomu analizu vod sushi (Guidance on Chemical Analysis of Inland Waters), Leningrad: Gidrometeoizdat, 1973.Google Scholar
  2. 2.
    Bittel, L., Zooplankton of Stratiotes aloides aggregations, Acta Univ. Nic. Copernici. Pr. Limnol., 1980, vol. 12, pp. 3–23.Google Scholar
  3. 3.
    Brammer, E.S., Exclusion of phytoplankton in the proximity of dominant water soldier (Stratiotes aloides), Freshwater Biol., 1979, vol. 9, no. 3, pp. 233–249.CrossRefGoogle Scholar
  4. 4.
    Brammer, E.S. and Wetzel, R.G., Uptake and release of K+, Na+ and Ca2+ by the water soldier, Stratiotes aloides L., Aquat. Bot., 1984, vol. 19, nos. 1–2, pp. 119–130.CrossRefGoogle Scholar
  5. 5.
    Burks, R.L., Jeppesen, E., and Lodge, D.M., Macrophyte and fish chemicals suppress daphnia growth and alter life history traits, Oikos, 2000, vol. 88, no. 1, pp. 139–147.CrossRefGoogle Scholar
  6. 6.
    Cataldo, D.A., Maroon, M., Schrader, L.E., and Youngs, V.L., Rapid colorimetric determination of nitrate in plant tissues by nitration of salicylic acid, Comm. Soil Sci. Plant Anal., 1975, vol. 6, no. 1, pp. 71–80.CrossRefGoogle Scholar
  7. 7.
    Datsenko, Yu.S., Evtrofirovanie vodokhranilishch. Gidrologo-gidrokhimicheskie aspekty (Eutrophication of Water Bodies: Hydrological and Hydrochemical Aspects), Moscow: Geos, 2007.Google Scholar
  8. 8.
    DeMott, W.R., Optimal foraging theory as a predictor of chemically mediated food selection by suspension-feeding copepods, Limnol. Oceanogr., 1989, vol. 34, no. 1, pp. 140–154.CrossRefGoogle Scholar
  9. 9.
    De Eyto, E. and Irvine, K., Variation in the biomass of functional groups comprising the open-water plankton of shallow lakes in Ireland, Biol. Envir.: Proc. Roy. Irish Acad., 2005, vol. 105B, no. 1, pp. 53–58.Google Scholar
  10. 10.
    Fischer, H. and Pusch, M., Comparison of bacterial production in sediments, epiphyton and the pelagic zone of a lowland river, Freshwater Biol., 2001, vol. 46, no. 10, pp. 1335–1348.CrossRefGoogle Scholar
  11. 11.
    De Geus-Kruyt, M. and Segal, S., Notes on the productivity of Stratiotes aloides in two lakes in the Netherlands, Pol. Arch. Hydrobiol., 1973, vol. 20, pp. 195–205.Google Scholar
  12. 12.
    Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: paleontological statistics software package for education and data analysis, Palaeontol. Electr., 2001, vol. 4, pp. 9–15.Google Scholar
  13. 13.
    Hilt, S., Allelopathic inhibition of epiphytes by submerged macrophytes, Aquat. Bot., 2006, vol. 85, no. 3, pp. 252–256.CrossRefGoogle Scholar
  14. 14.
    Kleeberg, A., Köhler, J., Sukhodolova, T., and Sukhodolov, A., Effects of aquatic macrophytes on organic matter deposition, resuspension and phosphorus entrainment in a lowland river, Freshwater Biol., 2010, vol. 55, no. 2, pp. 326–345.CrossRefGoogle Scholar
  15. 15.
    Korovchinsky, N.M., Vetvistousye rakoobraznye otryada Ctenopoda mirovoi fauny (morfologiya, sistematika, ekologiya, zoogeografiya) (Cladocerans of the Order Ctenopoda of the World Fauna (Morphology, Systematics, Ecology, and Zoogeography)), Moscow: KMK, 2004.Google Scholar
  16. 16.
    Kuznetsov, S.I. and Dubinina, G.A., Metody izucheniya vodnykh mikroorganizmov (Methods of Studying Aquatic Organisms), Moscow: Nauka, 1989.Google Scholar
  17. 17.
    Masclaux, H., Bec, A., and Bourdier, G., Trophic partitioning among three littoral microcrustaceans: relative importance of periphyton as food resource, J. Limnol., 2012, vol. 71, no. 2, pp. 261–266.CrossRefGoogle Scholar
  18. 18.
    Mieczan, T., The influence of emergent and submerged macrophyte beds on ciliate communities in a shallow lake, Oceanol. Hydrobiol. Stud., 2010, vol. 39, pp. 107–115.CrossRefGoogle Scholar
  19. 19.
    Mineeva, N.M. and Shchur, L.A., The content of chlorophyll a per unit phytoplankton biomass (review), Algologiya, 2012, vol. 22, no. 4, pp. 441–456.Google Scholar
  20. 20.
    Mohamed, Z.A. and Al-Shehri, A.M., Differential responses of epiphytic and planktonic toxic cyanobacteria to allelopathic substances of the submerged macrophyte Stratiotes aloides, Int. Rev. Hydrobiol., 2010, vol. 95, pp. 224–234.CrossRefGoogle Scholar
  21. 21.
    Monakov, A.V., Pitanie presnovodnykh bespozvonochnykh (Nutrition of Freshwater Invertebrates), Moscow: Inst. Probl. Ekol. Evol., Ross. Akad. Nauk, 1998.Google Scholar
  22. 22.
    Moore, J.C., Berlow, E.L., Coleman, D.C., de Ruiter, P.C., Dong, Q., Hastings, A., Johnson, N.C., McCann, K.S., Melville, K., Morin, P.J., Nadelhoffer, K., Rosemond, A.D., Post, D.M., Sabo, J.L., Scow, K.M., Vanni, M.J., and Wall, D.H., Detritus, trophic dynamics and biodiversity, Ecol. Lett., 2004, vol. 7, pp. 584–600.CrossRefGoogle Scholar
  23. 23.
    Mulderij, G.W., Mooij, M., Smolders, A.J.P., and Van Donk, E., Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides, Aquat. Bot., 2005, vol. 82, no. 4, pp. 284–296.CrossRefGoogle Scholar
  24. 24.
    Pace, M.L., McManus, G.B., and Findlay, S.E.G., Planktonic community structure determines the fate of bacterial production in a temperate lake, Limnol. Oceanogr., 1990, vol. 35, no. 4, pp. 795–808.CrossRefGoogle Scholar
  25. 25.
    Pace, M.L. and Vaqué, D., The importance of Daphnia in determining mortality rates of protozoans and rotifers in lakes, Limnol. Oceanogr., 1994, vol. 39, no. 5, pp. 985–996.CrossRefGoogle Scholar
  26. 26.
    Porter, K.G. and Feig, Y.S., The use of DAPI for identifying and counting of aquatic microflora, Limnol. Oceanogr., 1980, vol. 25, no. 5, pp. 943–948.CrossRefGoogle Scholar
  27. 27.
    Sirenko, L.A. and Kureishevich, A.V., Opredelenie soderzhaniya khlorofilla v planktone presnykh vodoemov (Determination of Chlorophyll Content in the Plankton of Freshwater Bodies), Kiev: Naukova Dumka, 1982.Google Scholar
  28. 28.
    Strzałek, M. and Koperski, P., The Stratiotes aloides L. stand as a habitat in oxbow lake Bużysko, Aquat. Bot., 2009, vol. 90, no. 1, pp. 1–6.CrossRefGoogle Scholar
  29. 29.
    Vadeboncoeur, Y., Jeppesen, E., Vander Zanden, M.J., Schierup, H.-H., Christoffersen, K., and Lodge, D.M., From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes, Limnol. Oceanogr., 2003, vol. 48, no. 4, pp. 1408–1418.CrossRefGoogle Scholar
  30. 30.
    Watson, R.A. and Osborne, P.L., An algal pigment ratio as an indicator of the nitrogen supply to phytoplankton in three Norfolk broads, Freshwater Biol., 1979, vol. 9, no. 6, pp. 585–594.CrossRefGoogle Scholar
  31. 31.
    Wetzel, R.G. and Manny, B.A., Secretion of dissolved organic carbon and nitrogen by aquatic macrophytes, Verh. Inter. Verein. Limnol., 1972, vol. 18, pt 1, pp. 162–170.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. A. Kurbatova
    • 1
    Email author
  • N. A. Lapteva
    • 1
  • S. N. Bykova
    • 1
  • I. Yu. Yershov
    • 1
  1. 1.Papanin Institute for Biology of Inland Waters, Russian Academy of SciencesBorokRussia

Personalised recommendations