Advertisement

Biology Bulletin

, Volume 45, Issue 4, pp 310–319 | Cite as

Morphometric and Molecular Diversity of the Holarctic Meromyza saltatrix (L., 1761) (Diptera, Chloropidae) in Eurasia

  • A. F. Safonkin
  • T. A. Triseleva
  • A. A. Yatsuk
  • V. G. Petrosyan
Genetics

Abstract

The population diversity of the frit fly Meromyza saltatrix from Poland, Mongolia, and several regions of the Russian Federation was analyzed by morphometric and molecular data on the mtDNA locus COI. Two phenotypes that correspond to two haplogroups (19 haplotypes) were identified by the absence or presence of black setae on the lower surface of the genae. A remarkable clinal variability among populations was demonstrated by the total area and area of the projecting part of the anterior processes of postgonites (APP), which play a critical role in the success of male copulation. Each parameter analyzed divided populations into four groups. Close populations with a natural barrier vary in the total area of the anterior process of the postgonite. We found an increased number of mutations including transversions in frit flies from Mongolia. Populations from Zvenigorod, South Ural Nature Reserve, and Mongolia might be of a later origin. The presence of particular haplogroup in the West European population of M. saltatrix with black setae, which is a unique feature of West European species of Meromyza, and their similarity to the Crimean population by the morphometrics of the APP is an indication of the possible isolation of this population in southern Europe during Quaternary glaciations with subsequent expansion to the northern part of the geographical area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alves, V.M., Moura, M.O., and de Carvalho, C.J.B., Wing shape is influenced by environmental variability in Polietina orbitalis (Stein) (Diptera: Muscidae), Rev. Brasil. Entomol., 2016, vol. 60, no. 2, pp. 150–156.CrossRefGoogle Scholar
  2. Avdeev, V.I., The steps of forming Eurasian steppe landscapes: geoflorogenetic aspects, Izv. Orenburg. Gos. Agrarn. Univ., 2009, vol. 1, no. 21, pp. 252–256.Google Scholar
  3. Avise, J.C., Phylogeography: The History and Formation of Species, Cambridge: Harvard Univ. Press, 2000.Google Scholar
  4. Ayala, F.J. and Kiger, J.A., Jr., Modern Genetics, Menlo Park, California: Benjamin Cummings Publ., 1984.Google Scholar
  5. Balachowsky, A. and Mesnil, L., Les insects nuisiblesaux plantes cultivees I., Paris: Ministère de l’Agriculture, 1935.Google Scholar
  6. Bandelt, H.J., Foster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37–48.CrossRefPubMedGoogle Scholar
  7. Becker, Th., Chloropidae, Arch. Zool., 1910, vol. 10, no. 1, p. 174.Google Scholar
  8. Beshovski, V., The range of the genus Meromyza Mg. (Diptera, Chloropidae) and its historical-geographic significance, Acta Zool. Bulgarica, 1986, vol. 32, pp. 11–18.Google Scholar
  9. Es’kov, K.Yu., Istoriya zemli i zhizni na nei (The History of the Earth and Life on It), Moscow: MIROS, 2000.Google Scholar
  10. Excoffier, L. and Lischer, H.E.L., Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Res., 2011, vol. 10, pp. 564–567.CrossRefGoogle Scholar
  11. Fedoseeva, L.I., The fauna of Meromyza Meig. (Diptera, Chloropidae) of Moscow oblast, Entomol. Obozr., 1960, vol. 39, no. 2 pp. 450–461.Google Scholar
  12. Fedoseeva, L.I., Meromyza nigriventris (Diptera, Chloropidae)—its systematic position, development, and harmfulness, Zool. Zh., 1969, vol. 48, no. 5, pp. 701–708.Google Scholar
  13. Fedoseeva, L.I., Revision of non-Arctic species of grass flies of the genus Meromyza Mg. (Diptera, Chloropidae), Entomol. Obozr., 1971, vol. 50, no. 4, pp. 911–930.Google Scholar
  14. Fedoseeva, L.I., Identification guide to grass flies of the genus Meromyza Mg. (Diptera, Chloropidae) on the territory of Russia and adjacent countries, Evraz. Entomol. Zh., 2003, vol. 2, no. 2, pp. 145–154.Google Scholar
  15. Gerlind, U.C., Lehmann, A., and Lehmann, W., Variation in body size among populations of the bushcricket Poecilimon thessalicus (Orthoptera: Phaneropteridae): an ecological adaptation?, J. Orthoptera Res., 2008, vol. 17, no. 2, pp. 165–169.CrossRefGoogle Scholar
  16. Homburg, K., Drees, C., Gossner, M.M., Rakosy, L., Vrezec, A., and Assmann, Th., Multiple glacial refugia of the low-dispersal ground beetle Carabus irregularis: molecular data support predictions of species distribution models, PLoS One, 2013, vol. 8, no. 4, pp. 1–12.CrossRefGoogle Scholar
  17. Hubicka, J., Krajowe gatunki rodzaju Meromyza Mg. (Diptera, Chloropidae), Lublin: Univ. Marii Curie-Sklodowskiej w Lublinie, 1970.Google Scholar
  18. Kataev, B.M., Genesis of the species group Harpalus laevipes (Coleoptera, Carabidae), in Materialy XIV S”ezda Russkogo entomologicheskogo obshchestva (Proc. XIV Congr. Russ. Entomol. Soc.), Tyumen: VNII Vet. Entomologii i Arakhnologii RASkhN, 2012, р. 75.Google Scholar
  19. Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambr. Univ. Press, 1983.CrossRefGoogle Scholar
  20. Kühne, G., Kosuch, J., Hochkirch, A., and Schmitt, T., Extra-Mediterranean glacial refugia in a Mediterranean faunal element: the phylogeography of the chalkhill blue Polyommatus coridon (Lepidoptera, Lycaenidae), Sci. Rep., 2017. 7:43533 doi 10.1038/srep43533 1Google Scholar
  21. Lachmann, A.D., Sperm transfer during copulation in five Coproica species (Diptera: Sphaeroceridae), Eur. J. Entomol., 1997, vol. 94, pp. 271–286.Google Scholar
  22. Legendre, P. and Legendre, L., Numerical Ecology, Amsterdam: Elsevier, 1998.Google Scholar
  23. Linnaei, C., Musca saltatrix, in Fauna Svecica: Sistems Animalia Sveciae Regni: Mamalia, Aves, Amphibian, Pisces, Insect, Vermes, Distributa per Classes, Ordines, Gener, Species, Stockholm, 1761, p. 555.Google Scholar
  24. Meigen, J., Meromyza, in Systematische Beschreibung der zweiflugeligen Insekten, 1830, vol. 6, pp. 163–165.Google Scholar
  25. Meigen, J., Meromyza, in Systematische Beschreibung der zweiflugeligen Insekten, 1838, vol. 7, pp. 395–396.Google Scholar
  26. Mikkola, K., Lock-and-key mechanisms of the internal genitalia of the Noctuidae (Lepidoptera): how are they selected for?, Eur. J. Entomol., 2008, vol. 105, pp. 13–25.CrossRefGoogle Scholar
  27. Narchuk, E.P., Zlakovye mukhi. Ikh sistema, evolyutsiya i svyazi s rasteniyami (Grass Flies. Their System, Evolution, and Relationships with Plants), Kerzhner, I.M., Ed., Leningrad: Nauka, 1987.Google Scholar
  28. Narchuk, E.P. and Fedoseeva, L.I., Grass flies of the genus Meromyza Mg. (Diptera, Chloropidae) in the fauna of the Mongolian People’s Republic, in Nasekomye Mongolii (Insects of Mongolia), Leningrad: Nauka, 1982, vol. 8, pp. 454–482.Google Scholar
  29. Narchuk, E.P. and Fedoseeva, L.I., Overview of grass flies of the genus Meromyza Meigen, 1830 (Diptera, Chloropidae) of the Palearctic fauna with identification keys, analysis of synonymy, food specialization, and geographical distribution. Part 2, Entomol. Obozr., 2011, vol. 90, no. 2, pp. 442–463.Google Scholar
  30. Nishijima, Y., Studies on the barley stem maggot, Meromyza saltatrix (Linne), with special reference to the ecological aspects, J. Faculty Agric. Hokkaido Univ., 1960, vol. 51, pt 2, pp. 382–448.Google Scholar
  31. Olson, C.L., Comparative robustness of six tests on multivariate analysis of variance, J. Am. Statist. Ass., 1974, vol. 69, pp. 894–908.CrossRefGoogle Scholar
  32. Olson, C.L., On choosing a test statistics in multivariate analysis of variance, Psychol. Bull., 1976, vol. 83, pp. 579–586.CrossRefGoogle Scholar
  33. Olson, C.L., Practical considerations in choosing a MANOVA test statistic: a rejoinder to Stevens, Psychol. Bull., 1979, vol. 86, pp. 1350–1352.CrossRefGoogle Scholar
  34. Petrosyan, V.G., An integrated system for database management and statistical analysis of biological data. Biosystem office. The Federal Service for Intellectual Property of Russia, Certificate no. 2014663194, registration date December 18, 2014.Google Scholar
  35. Plum, R.T., The effect of pests and diseases on grasses, in The Grass Crop: The Physiological Basis of Production, Jones, M.B. and Lazenby, A., Eds., London: Springer, Netherlands, 1988, pp. 277–309.Google Scholar
  36. Prokhanov, Ya.I., Herbaceous plains and latest deserts, their nature and origin. Problems of plant phylogeny, Tr. MOIP. Otd. Biol., 1965, vol. 13, pp. 124–154.Google Scholar
  37. Von Reumont, B.M., Struwe, J.F., Schwarzer, J., and Misof, B., Phylogeography of the burnet moth Zygaena transalpina complex: molecular and morphometric differentiation suggests glacial refugia in Southern France, Western France and micro-refugia within the Alps, J. Zool. Syst. Evol. Res., 2012, vol. 50, no. 1, pp. 38–50.Google Scholar
  38. Safonkin, A.F., Reproductive polymorphism of leafrollers (Lepidoptera: Tortricidae), in Pheromones: Theories, Types and Users, Gregory, I.M., Ed.,New York: Nova Sci. Publ., 2010, pt 1.Google Scholar
  39. Simon, C., Frati, A., Beckenbach, B., Crespi, H., and Flook, P., Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers, Ann. Entomol. Soc. Am., 1994, vol. 87, pp. 651–701.CrossRefGoogle Scholar
  40. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Triselyova, T.A., Akent’eva, N.A., and Safonkin, A.F., Phylogenetic relations between frit fly groups from the genus Meromyza based on genetic and morphological analysis, Biol. Bull. (Moscow), 2014, vol. 41, no. 3, pp. 203–207.CrossRefGoogle Scholar
  42. Yi Bai, Jia-Jia Dong, De-Long Guan, Juan-Ying Xie, and Sheng-Quan Xu, Geographic variation in wing size and shape of the grasshopper Trilophidia annulata (Orthoptera: Oedipodidae): morphological trait variations follow anecogeographical rule, Sci. Rep., 2016. 6:32680 doi 10.1038/srep32680Google Scholar
  43. Zar, J.H., Biostatistical Analysis, 5th ed., New Jersey: Prentice Hall, 2010.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. F. Safonkin
    • 1
  • T. A. Triseleva
    • 1
  • A. A. Yatsuk
    • 1
  • V. G. Petrosyan
    • 1
  1. 1.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia

Personalised recommendations