Biology Bulletin

, Volume 45, Issue 2, pp 119–125 | Cite as

Cytogenetic Activity of Gold Nanoparticles in Germ and Somatic Cells of 129 Mice with a Nonsense Mutation in the DNA Polymerase Iota Gene

  • N. M. Mudzhiri
  • S. T. Zakhidov
  • V. M. Rudoy
  • O. V. Dement’eva
  • A. A. Makarov
  • I. V. Makarova
  • I. A. Zelenina
  • L. E. Andreeva
  • T. L. Marshak
Developmental Biology
  • 8 Downloads

Abstract

In this study, we investigated the cytogenetic effects of single and quadruple exposure of spermatogenic cells and hepatocytes of 129 mice, which have a mutation in the gene that encodes DNA polymerase iota, to ultrasmall gold nanoparticles (GNPs). The combined effects of GNPs and chemical mutagen dipin were evaluated. In all cases, except for the experiment with the quadruple GNP injection, we observed a slight, statistically nonsignificant increase in the frequency of round spermatids with micronuclei compared to the negative control (saline). It is established that, in the intact liver of 129 mice, in all variants of the experiment, GNPs behaved as a potentially cytotoxic agent, as evidenced by the decrease in the frequency of the micronucleated hepatocytes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balansky, R., Longobardi, M., Ganchev, G., Iltcheva, M., Nedyalkov, N., Atanasov, P., Toshkova, R., De Flora, S., and Izzotti, A., Transplacental clastogenic and epigenetic effects of gold nanoparticles in mice, Mutat. Res., 2013, vol. 751–752, pp. 42–48.CrossRefPubMedGoogle Scholar
  2. Di Bucchianico, S., Fabbrizi, M., Cirillo, S., Uboldi, C., Gilliland, D., Valsami-Jones, E., and Migliore, L., Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles, Int. J. Nanomed., 2014, vol. 9, pp. 2191–2204.CrossRefGoogle Scholar
  3. Duff, D.G., Baiker, A., and Edwards, P.P., A new hydrosol of gold clusters. 1. Formation and particle size variation, Langmuir, 1993, vol. 9, pp. 2301–2309.CrossRefGoogle Scholar
  4. George, J.M., Magogotya, M., Vetten, M.A., Buys, A.V., and Gulumian, M., An investigation of the genotoxicity and interference of gold nanoparticles in commonly used in vitro mutagenicity and genotoxicity assays, Toxicol. Sci., 2017, vol. 156, pp. 149–166.PubMedGoogle Scholar
  5. Kazachenko, K.Y., Miropolskaya, N.A., Gening, L.V., Tarantul, V.Z., and Makarova, A.V., Alternative splicing at exon 2 results in the loss of the catalytic activity of mouse DNA polymerase iota in vitro, DNA Repair, 2016, vol. 50, pp. 77–82.CrossRefGoogle Scholar
  6. Liu, Y., Meyer-Zaika, W., Franzka, S., Schmid, G., Tsoli, M., and Kuhn, H., Gold-cluster degradation by the transition of B-DNA, Angew. Chem., Int. Ed. Engl., 2003, vol. 42, pp. 2853–2857.CrossRefGoogle Scholar
  7. Makarova, A.V., Gening, L.V., Makarova, I.V., and Tarantul, V.Z., Activity of error-prone DNA polymerase iota in different periods of house mouse Mus musculus ontogeny, Russ. J. Dev. Biol., 2008, vol. 39, no. 5, pp. 297–302.CrossRefGoogle Scholar
  8. Makarova, A.V. and Kulbachinskiy, A.V., Structure of human DNA polymerase iota and the mechanism of DNA synthesis, Biochemistry (Moscow), 2012, vol. 77, pp. 547–561.PubMedGoogle Scholar
  9. Malashenko, A.M., Beskova, T.B., Pomerantseva, M.D., and Ramaiya, L.K., Comparison of three inbred mouse strains by general and genetic radiosensitivity, Genet. Zhivotn., 2003, vol. 39, pp. 1247–1251.Google Scholar
  10. Mytych, J., Lewinska, A., Zebrowski, J., and Wnuk, M., Gold nanoparticles promote oxidant-mediated activation of NF-kB and 53BP1 recruitment-based adaptive response in human astrocytes, BioMed Res. Int., 2015, vol. 2015, article ID 304575.Google Scholar
  11. Newcomb, E.W., Diamond, L.E., Sloan, S.R., Corominas, M., Guerrerro, I., and Pellicer, A., Radiation and chemical activation of ras oncogenes in different mouse strains, Environ. Health Perspect., 1989, vol. 81, pp. 33–37.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Roderick, T.H., The response of twenty-seven inbred strains of mice to daily doses of whole-body X-irradiation, Radiat. Res., 1963, vol. 20, pp. 631–639.CrossRefPubMedGoogle Scholar
  13. Schulz, M., Ma-Hock, L., Brill, S., Strauss, V., Treumann, S., Gröters, S., van Ravenzwaay, B., and Landsiedel, R., Investigation on the genotoxicity of different sizes of gold nanoparticles administered to the lungs of rats, Mutat. Res., 2012, vol. 745, pp. 51–57.CrossRefPubMedGoogle Scholar
  14. Singh, S., D’Britto, V., Prabhune, A.A., Ramana, C.V., Dhawan, A., and Prasad, B.L.V., Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles, New J. Chem., 2010, vol. 34, pp. 294–301.CrossRefGoogle Scholar
  15. Storer, J.B., Longevity and gross pathology at death in 22 inbred mouse strains, J. Gerontol., 1966, vol. 21, pp. 404–409.CrossRefPubMedGoogle Scholar
  16. Tsoli, M., Kuhn, H., Brandau, W., Esche, H., and Schmid, G., Cellular uptake and toxicity of Au55 clusters, Small, 2005, vol. 1, pp. 841–844.CrossRefPubMedGoogle Scholar
  17. Tyurin, Yu.N. and Makarov, A.A., Statisticheskii analiz dannykh na komp’yutere (Statistical Data Analysis on Computer), Moscow: Infra-M, 1998.Google Scholar
  18. Vecchio, G., Galeone, A., Brunetti, V., Maiorano, G., Rizzello, L., Sabella, S., Cingolani, R., and Pompa, P.P., Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster, Nanomedicine: Nanotechnol. Biol. Med., 2012, vol. 8, pp. 1–7.CrossRefGoogle Scholar
  19. Wang, S., Lawson, R., Ray, P.C., and Yu, H., Toxic effects of gold nanoparticles on salmonella typhimurium bacteria, Toxicol. Ind. Health, 2011, vol. 27, pp. 547–554.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Yevdokimov, Yu.M., Gold nanoparticles govern DNA packaging, Priroda (Moscow, Russ. Fed.), 2015a, no. 4, pp. 13–21.Google Scholar
  21. Yevdokimov, Yu.M., Gold nanoparticles and DNA liquid crystals, Vestn. Mosk. Univ., Ser. 2: Chem., 2015b, vol. 56, no. 3, pp. 147–157.Google Scholar
  22. Zakhidov, S.T., Paranyushkina, L.P., Mahran Hoda, A.H., El-Sayed, K.A.-H., and Golichenkov, V.A., Effect of chemical mutagens on spermatogenesis of mammals. Cytogenetic analysis, Izv. Akad. Nauk, Ser. Biol., 1994, no. 3, pp. 353–362.Google Scholar
  23. Zakhidov, S.T., Marshak, T.L., Uryvaeva, I.V., Semenova, M.L., Gopko, A.V., Delone, G.V., Mikhaleva, Ya.Yu., and Makarov, A.A., Cytogenetic aberrations in the cells of liver and spermatogenic epithelium in senescence accelerated SAMP1 and SAMR1 mice, Russ. J. Dev. Biol., 2002, vol. 32, no. 6, pp. 362–373.CrossRefGoogle Scholar
  24. Zakhidov, S.T., Kulibin, A.Yu., Marshak, T.L., Malolina, E.A., and Zelenina, I.A., Estimation of the frequencies of induced mutations in spermatogenic cells of senescenceaccelerated prone mice of the SAMP1 strain, Russ. J. Genet., 2008, vol. 44, no. 11, pp. 1338–1344.CrossRefGoogle Scholar
  25. Zakhidov, S.T., Pavlyuchenkova, S.M., Marshak, T.L., Rudoy, V.M., Dement’eva, O.V., Zelenina, I.A., Skuridin, S.G., Makarov, A.A., Khokhlov, A.N., and Evdokimov, Yu.M., Effect of gold nanoparticles on mouse spermatogenesis, Biol. Bull. (Moscow), 2012, vol. 39, no. 3, pp. 229–236.CrossRefGoogle Scholar
  26. Zakhidov, S.T., Mudzhiri, N.M., Rudoy, V.M., Dement’eva, O.V., Makarov, A.A., Zelenina, I.A., and Marshak, T.L., Gold nanoparticles: mutagen, antimutagen, or comutagen?, Biol. Bull. (Moscow), 2017, vol. 44, no. 3, pp. 233–236.CrossRefGoogle Scholar
  27. Zhang, X., Chibli, H., Mielke, R., and Nadeau, J., Ultrasmall gold-doxorubicin conjugates rapidly kill apoptosisresistant cancer cells, Bioconjug. Chem., 2011, vol. 22, pp. 235–243.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. M. Mudzhiri
    • 1
    • 3
  • S. T. Zakhidov
    • 1
  • V. M. Rudoy
    • 2
  • O. V. Dement’eva
    • 2
  • A. A. Makarov
    • 4
  • I. V. Makarova
    • 5
  • I. A. Zelenina
    • 1
  • L. E. Andreeva
    • 5
  • T. L. Marshak
    • 3
  1. 1.Faculty of BiologyMoscow State UniversityMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  3. 3.Koltzov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia
  4. 4.Higher School of Economics National Research UniversityMoscowRussia
  5. 5.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations