Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 11, pp 1081–1088 | Cite as

Application of Response Surface Methodology for Optimization of Conditions for Nickel Determination in Water and Vegetables by Switchable Solvent based Liquid Phase Microextraction

  • Fereshteh Heydari
  • Majid RamezaniEmail author
ARTICLES
  • 10 Downloads

Abstract

A novel switchable-hydrophilicity solvent based liquid phase microextraction coupled with flame atomic absorption spectrometry has been applied for preconcentration and determination of Ni(II). Triethylamine (TEA) was selected as an inexpensive switchable solvent in the present work. Ni(II)-1-(2-pyridylazo)-2-naphthol complex was extracted into the TEA phase by converting the protonated carbonate to TEA. The experimental conditions were optimized using Plackett–Burman and Box–Behnken design methods. Such analytical parameters as the limit of detection, relative standard deviation and enhancement factor were 3 μg/L, 1.1% and 70, respectively. The calibration graph was linear over the range of 10 to 800 μg/L with the correlation coefficient of 0.998. The proposed method was successfully applied to the quantification of trace nickel in water and vegetable samples.

Keywords:

switchable-hydrophilicity solvent nickel Plackett–Burman and Box–Behnken design water and vegetable samples 

Notes

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

  1. 1.
    Alizadeh, K., Rezaei, B., and Khazaeli, E., Sens. Actuators B, 2014, vol. 193, p. 267.CrossRefGoogle Scholar
  2. 2.
    Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance, Merian, E., Anke, M., Ihnat, M., and Stoeppler, M., Eds., Heidelberg: Wiley, 2004, 2nd ed.Google Scholar
  3. 3.
    Chena, J., Xiao, S., Wu, X., Fang, K., and Liu, W., Talanta, 2005, vol. 67, p. 992.CrossRefGoogle Scholar
  4. 4.
    Dadfarnia, S., Shahbazi, Z., and Jafari, A.A., Bull. Chem. Soc. Ethiop., 2008, vol. 22, p. 323.Google Scholar
  5. 5.
    Arain, M.B., Kazi, T.G., Jamali, M.K., Afridi, H.I., Jalbani, N., Sarfraz, R.A., Baig, J.A., and Memon, M.A., J. Hazard. Mater., 2008, vol. 160, p. 235.CrossRefGoogle Scholar
  6. 6.
    Dadfarnia, S., Haji Shabani, A.M., Jafari, A.A., and Saadat, Z., Chem. Anal. (Warsaw, Pol.), 2007, vol. 52, p. 791.Google Scholar
  7. 7.
    Tuzen, M., Soylak, M., Citak, D., Ferreira, H.S., Korn, M.G.A., and Bezerra, M.A., J. Hazard. Mater., 2009, vol. 162, p. 1041.CrossRefGoogle Scholar
  8. 8.
    Azevedo Lemos, V., Silva da Franca, R., and Oliveira Moreira, B., J. Sep. Purif. Technol., 2007, vol. 54, p. 349.CrossRefGoogle Scholar
  9. 9.
    Ghaedi, M., Shokrollahi, A., Ahmadi, F., Rajabi, H.R., and Soylak, M., J. Hazard. Mater., 2008, vol. 150, p. 533.CrossRefGoogle Scholar
  10. 10.
    Lemos, V.A., dos Santos Vieira, E., dos Santos Silva, E., and dos Santos, L.O., Clean: Soil, Air, Water, 2012, vol. 40, p. 268.Google Scholar
  11. 11.
    Alothman, Z.A., Habila, M.A., Yilmaz, E., Al-Harbi, N.M., and Soylak, M., Int. J. Environ. Anal. Chem., 2015, vol. 95, p. 1311.CrossRefGoogle Scholar
  12. 12.
    Jessop, P.G., Heldebrant, D.J., Li, X., Eckert, C.A., and Liotta, C.L., Nature, 2005, vol. 436, p. 1102.CrossRefGoogle Scholar
  13. 13.
    Yilmaz, E. and Soylak, M., J. Anal. At. Spectrom., 2015, vol. 30, p. 1629.CrossRefGoogle Scholar
  14. 14.
    Durelle, J., Vanderveen, J.R., Quan, Y., Chalifoux, C.B., Kostin, J.E., and Jessop, P.G., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 5308.CrossRefGoogle Scholar
  15. 15.
    Vanderveen, J.R., Durelle, J., and Jessop, P.G., Green Chem., 2014, vol. 16, p. 1187.CrossRefGoogle Scholar
  16. 16.
    Ezoddin, M., Abdi, K., and Lamei, N., Talanta, 2016, vol. 153, p. 247.CrossRefGoogle Scholar
  17. 17.
    Mohammadzadeh, A., Samadi-Maybodi, A., and Khodadoust, S., Spectrochim. Acta, Part A, 2013, vol. 113, p. 423.CrossRefGoogle Scholar
  18. 18.
    López, R., Goñi, F., Etxandia, A., and Millán, E., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2007, vol. 846, p. 298.CrossRefGoogle Scholar
  19. 19.
    Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., and David, J.M., Brandao, G.C., da Silva, E.G.P., Portugal, L.A., dos Reis, P.S., Souza, A.S., and dos Santos, W.N.L., Anal. Chim. Acta, 2007, vol. 597, p. 179.CrossRefGoogle Scholar
  20. 20.
    Aydin, F.A. and Soylak, M., Talanta, 2007, vol. 73, p. 134.CrossRefGoogle Scholar
  21. 21.
    Kazi, T.G., J. Ind. Eng. Chem. Res., 2016, vol. 35, p. 93.CrossRefGoogle Scholar
  22. 22.
    Alothman, Z.A., Habila, M.A., Yilmaz, E., Soylak, M., and Alfadul, S.M., J. Mol. Liq., 2016, vol. 221, p.773.CrossRefGoogle Scholar
  23. 23.
    Zarei, Z. and Shemirani, F., J. Food Sci., 2012, vol. 77, p. 1242.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Arak Branch, Islamic Azad UniversityArakIran

Personalised recommendations