Journal of Analytical Chemistry

, Volume 74, Issue 11, pp 1057–1063 | Cite as

Preconcentration of Catecholamins on Hypercrosslinked Polystyrene and Their Determination by High-Performance Liquid Chromatography

  • V. V. Tolmacheva
  • D. I. Yarykin
  • M. V. Gorbunova
  • V. V. Apyari
  • S. G. DmitrienkoEmail author
  • Yu. A. Zolotov


The use of hypercrosslinked polystyrene for the group sorption preconcentration of catecholamines is proposed. The conditions for the preconcentration of noradrenaline, adrenaline, and dopamine are optimized: a microcolumn (10 × 6 mm), mass of adsorbent 0.03 g, 25 mL of solution (pH ~ 8.5), and transmission rate of the solution 1.0 mL/min. Compounds were desorbed with 1 mL of 6 M acetic acid and determined in the eluate by reversed-phase HPLC with an amperometric detector (E = 0.8 V). Adsorption preconcentration ensures the reduction of the limits of detection for catecholamines by more than 20 times. The limits of detection were 0.7 ng/mL for dopamine and 1 ng/mL for noradrenaline and adrenaline. The procedure was applied to the analysis of model mixtures based on urine.


adrenaline noradrenaline dopamine solid phase extraction hypercrosslinked polystyrene HPLC 



The work was performed with the financial support of the Russian Science Foundation, project no. 18-73-10001 using equipment acquired from the funds of the Moscow University Development Program.


  1. 1.
    Kulinskii, V.I. and Kolesnichenko, L.S., Vopr. Med. Khim., 2002, vol. 48, no. 1, p. 44.Google Scholar
  2. 2.
    Goldstein, D.S., Clin. Auton. Res., 2010, vol. 20, p. 331.CrossRefGoogle Scholar
  3. 3.
    Pussard, E., Neveux, M., and Guigueno, N., Clin. Biochem., 2009, vol. 42, p. 536.CrossRefGoogle Scholar
  4. 4.
    Marc, D.T., Ailts, J.W., Campeau, D.C.A., Bull, M.J., and Olson, K.L., Neurosci. Biobehav. Rev., 2011, vol. 35, p. 635.CrossRefGoogle Scholar
  5. 5.
    Nikolajsen, R.P.H. and Hansen, A.M., Anal. Chim. Acta, 2001, vol. 49, p. 1.CrossRefGoogle Scholar
  6. 6.
    Bergquist, J., Ściubisz, A., Kaczor, A., and Silberring, J., J. Neurosci. Methods, 2002, vol. 113, p. 1.CrossRefGoogle Scholar
  7. 7.
    Tsunoda, M., Anal. Bioanal. Chem., 2006, vol. 386, p. 506.CrossRefGoogle Scholar
  8. 8.
    Perry, M., Li, Q., and Kennedy, R.T., Anal. Chim. Acta, 2009, vol. 653, p. 1.CrossRefGoogle Scholar
  9. 9.
    Bicker, J., Fortuna, A., Alves, G., and Falcão, A., Anal. Chim. Acta, 2013, vol. 768, p. 12.CrossRefGoogle Scholar
  10. 10.
    Kartsova, L.A., Sidorova, A.A., Kazakov, V.A., Bessonova, E.A., and Yashin, A.Ya., J. Anal. Chem., 2004, vol. 59, no. 8, p. 737.CrossRefGoogle Scholar
  11. 11.
    Sidorova, A.A. andKartsova, L.A., Sorbtsionnye Khromatogr. Protsessy, 2009, vol. 9, no. 6, p. 774.Google Scholar
  12. 12.
    Zhang, G., Zhang, Y., Ji, C., McDonald, T., Walton, J., Groeber, E.A., Steenwyk, R.C., and Lin, Z., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2012, vosl. 895–896, p. 186.Google Scholar
  13. 13.
    Dunand, M., Gubian, D., Stauffer, M., Abid, K., and Grouzmann, E., Anal. Chem., 2013, vol. 85, p. 3539.CrossRefGoogle Scholar
  14. 14.
    Raggi, M.A., Sabbioni, C., Nicoletta, G., Mandrioli, R., and Gerra, G., J. Sep. Sci., 2003, vol. 26, p. 1141.CrossRefGoogle Scholar
  15. 15.
    Talwar, D., Williamson, C., McLaughlin, A., Gill, A., and O’Reilly, D.S.J., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2002, vol. 769, p. 341.CrossRefGoogle Scholar
  16. 16.
    Whiting, M.J., Ann. Clin. Biochem., 2009, vol. 46, p. 129.CrossRefGoogle Scholar
  17. 17.
    Sabbioni, C., Saracino, M.A., Mandrioli, R., Pinzauti, S., Furlanetto, S., Gerra, G., and Raggi, M.A., J. Chromatogr. A, 2004, vol. 1032, p. 65.CrossRefGoogle Scholar
  18. 18.
    Li, X., Li, S., Wynveen, P., Mork, K., and Kellermann, G., Anal. Bioanal. Chem., 2014, vol. 406, p. 7287.CrossRefGoogle Scholar
  19. 19.
    Li, X., Li, S., and Kellermann, G., Talanta, 2016, vol. 159, p. 238.CrossRefGoogle Scholar
  20. 20.
    Kartsova, L.A., Bessonova, E.A., Sidorova, A.A., Tver’yanovich, I.A., Kazakov, V.A., and Velikanova, L.I., Russ. J. Appl. Chem., 2004, vol. 77, no. 7, p. 1150.CrossRefGoogle Scholar
  21. 21.
    Kartsova, L.A., Sidorova, A.A., and Ivanova, A.S., J. Anal. Chem., 2007, vol. 62, no. 10, p. 960.CrossRefGoogle Scholar
  22. 22.
    Dmitrienko, S.G., Tikhomirova, T.I., Apyari, V.V., Tolmacheva, V.V., Kochuk, E.V., and Zolotov, Yu.A., J. Anal. Chem., 2018, vol. 73, no. 11, p. 1053.CrossRefGoogle Scholar
  23. 23.
    Raggi, M., Sabbioni, C., Casamenti, G., Gerra, G., Calonghi, N., and Masotti, L., J. Chromatogr. B: Biomed. Sci. Appl., 1999, vol. 730, p. 201.CrossRefGoogle Scholar
  24. 24.
    Sychov, C.S., Ilyin, M.M., Davankov, V.A., and Sochilina, K.O., J. Chromatogr. A, 2004, vol. 1030, p. 17.CrossRefGoogle Scholar
  25. 25.
    Streat, M. and Sweetland, L.A., Process Saf. Environ. Prot., 1998, vol. 76, no. 2, p. 115.CrossRefGoogle Scholar
  26. 26.
    Penner, N.A. and Nesterenko, P.N., J. Chromatogr. A, 2000, vol. 884, p. 41.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Tolmacheva
    • 1
    • 2
  • D. I. Yarykin
    • 1
  • M. V. Gorbunova
    • 1
  • V. V. Apyari
    • 1
  • S. G. Dmitrienko
    • 1
    Email author
  • Yu. A. Zolotov
    • 1
    • 2
  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations