Journal of Analytical Chemistry

, Volume 74, Issue 8, pp 800–808 | Cite as

Estimation of Trace Level Cadmium(II) by Polyaniline-zirconium Phosphoborate Nanocomposite-based Membrane Electrode

  • Sandeep Kaushal
  • Rahul Badru
  • Pritpal SinghEmail author
  • Sanjeev Kumar
  • Susheel K. Mittal


Present work deals with a new ion selective membrane electrode suitable for determining trace cadmium(II) concentration in environmental samples. After structural and morphological characterization, the synthesized nanocomposite was observed to be selective towards Cd(II) on the basis of distribution studies, and was further employed in fabricating Cd(II) ion selective membrane electrode. Polyaniline incorporated zirconium phosphoborate nanocomposite prepared by the sol-gel method was used as an electroactive material and the epoxy resin, araldite as binder in the fabrication of membrane electrode. The fabricated electrode exhibits sub-Nernstian response of 22.9 mV/decade over a wide concentration range, low limit of detection (4 × 10–7 M), fast response time (14 s), long life time of 4 months and wide pH working range (2.5 to 8.0). The electrode was successfully used for estimation of trace levels of Cd(II) in industrial effluents of Ni‒Cd battery and printer toner units.


ion-exchanger nanocomposite zirconium cadmium ion-selective electrode 



PPS, SK and RB gratefully acknowledge the facilities provided by Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab (India). SKM is thankful to Thapar University, Patiala for support.


The authors declare no conflict of interest.


  1. 1.
    Taher, M.A., Turk. J. Chem., 2003, vol. 27, p. 529.Google Scholar
  2. 2.
    Krishna, M.V.B., Shekhar, R., Karunasagar, D., and Arunachalam, J., Anal. Chim. Acta, 2000, vol. 408, p. 199.CrossRefGoogle Scholar
  3. 3.
    Nawrot, T.S., Staessen, J.A., Roels, H.A., Munters, E., Cuypers, A., Richart, T., Ruttens, A., Smeets, K., Clijsters, H., and Vangronsveld, J., Biometals, 2010, vol. 23, p. 769.CrossRefGoogle Scholar
  4. 4.
    Godt, J., Scheidig, F., Siestrup, C.G., Esche, V., Brandenburg, P., Reich, A., and Groneberg, D.A., J. Occup. Med. Toxicol., 2006, vol. 1, p. 22.CrossRefGoogle Scholar
  5. 5.
    Turkdogan, M.K., Kilicel, F., Kara, K., and Uygan, I., Environ. Toxicol. Pharmacol., 2003, vol. 13, p. 175.CrossRefGoogle Scholar
  6. 6.
    Guo, W., Hu, S., Xiao, Y., Zhang, H., and Xie, X., Chemosphere, 2010, vol. 81, p. 1463.CrossRefGoogle Scholar
  7. 7.
    Bushell, A.F., Budd, P.M., Attfield, M.P., Jones, J.T., Hasell, T., Cooper, A.I., Bernardo, P., Bazzarelli, F., Clarizia, G., and Jansen, J.C., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, p. 1253.CrossRefGoogle Scholar
  8. 8.
    Thanganathan, U., J. Mater. Chem., 2011, vol. 21, p. 456.CrossRefGoogle Scholar
  9. 9.
    Pathania, D., Sharma, G., and Thakur, R., Chem. Eng. J., 2015, vol. 267, p. 235.CrossRefGoogle Scholar
  10. 10.
    Shamsipur, M. and Mashhadizadeh, M.H., Talanta, 2001, vol. 53, p. 1065.CrossRefGoogle Scholar
  11. 11.
    Javanbakht, M., Shabanikia, A., Darvich, M.R., Ganjali, M.R., and Shamsipur, M., Anal. Chim. Acta, 2000, vol. 408, p. 75.CrossRefGoogle Scholar
  12. 12.
    Deng, H., Zhao, S., Meng, Q., Zhang, W., and Hu, B., Ind. Eng. Chem. Res., 2014, vol. 53, p. 15230.CrossRefGoogle Scholar
  13. 13.
    Tomar, P.K., Chandra, S., and Malik, A., Mater. Sci. Eng. C, 2013, vol. 33, p. 4978.CrossRefGoogle Scholar
  14. 14.
    Al-Othman, Z.A., Naushad, M., and Nilchi, A., J. Inorg. Organomet. Polym., 2011, vol. 21, p. 547.CrossRefGoogle Scholar
  15. 15.
    Kaushal, S., Badru, R., Kumar, S., Mittal, S.K., and Singh, P., RSC Adv., 2016, vol. 6, p. 3150.CrossRefGoogle Scholar
  16. 16.
    Somer, G., Ummihan, T., and Kalayci, Y.S., Talanta, 2015, vol. 142, p. 120.CrossRefGoogle Scholar
  17. 17.
    Khan, A.A. and Khan, A., Cent. Eur. J. Chem., 2010, vol. 8, p. 396.Google Scholar
  18. 18.
    Alam, Z., Inamuddin, and Nabi, S.A., Desalination, 2010, vol. 250, p. 515.CrossRefGoogle Scholar
  19. 19.
    Wardak, C., Electroanalysis, 2012, vol. 24, p. 85.CrossRefGoogle Scholar
  20. 20.
    Umezawa, Y., Umezawa, K., and Sato, H., Pure Appl. Chem., 1995, vol. 67, p. 507.CrossRefGoogle Scholar
  21. 21.
    Thind, P.S., Mittal, S.K., and Gujral, S., React. Inorg. Met. Org. Chem., 1988, vol. 18, p. 593.CrossRefGoogle Scholar
  22. 22.
    Kaushal, S., Singh, P.P., and Mittal, S.K., J. Electrochem. Sci. Eng., 2014, vol. 4, p. 55.Google Scholar
  23. 23.
    Kaushal, S., Singh, P.P., and Mittal, S.K., J. New Mat. Electrochem. Syst., 2014, vol. 17, p. 5.CrossRefGoogle Scholar
  24. 24.
    Gupta, V.K., Pathania, D., Kotiyal, N.C., and Sharma, G., J. Mol. Liq., 2014, vol. 190, p. 139.CrossRefGoogle Scholar
  25. 25.
    Crinic, G., Bioresour. Technol., 2006, vol. 97, p. 1061.CrossRefGoogle Scholar
  26. 26.
    Buck, R.P. and Linder, E., Pure Appl. Chem., 1994, vol. 66, p. 2527.CrossRefGoogle Scholar
  27. 27.
    Inamuddin, M.N. and Rangreez, T.A., Desalin. Water. Treat., 2015, vol. 55, p. 463.CrossRefGoogle Scholar
  28. 28.
    Nabi, S.A. and Inamuddin, Z.A., Sens. Transducers J., 2008, vol. 92, p. 87.Google Scholar
  29. 29.
    Khamjumphol, U., Watchasit, S., Suksai, C., Janrungroatsakul, W., Boonchiangma, S., Tuntulani, T., and Ngeontae, W., Anal. Chim. Acta, 2011, vol. 704, p. 73.CrossRefGoogle Scholar
  30. 30.
    Khan, A.A. and Khan, A., Cent. Eur. J. Chem., 2010, vol. 8, p. 396.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Sandeep Kaushal
    • 1
  • Rahul Badru
    • 1
  • Pritpal Singh
    • 1
    Email author
  • Sanjeev Kumar
    • 2
  • Susheel K. Mittal
    • 3
  1. 1.Department of Chemistry, Sri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  2. 2.Department of Physics, Sri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  3. 3.School of Chemistry & Biochemistry, Thapar UniversityPatialaIndia

Personalised recommendations