Journal of Analytical Chemistry

, Volume 74, Issue 8, pp 825–833 | Cite as

Study of the Mobility of Cerium Oxide Nanoparticles in Soil Using Dynamic Extraction in a Microcolumn and a Rotating Coiled Column

  • M. S. ErmolinEmail author
  • N. N. Fedyunina
  • V. K. Karandashev
  • P. S. Fedotov


Currently, nanomaterials are widely used in various fields of human activity, which inevitably leads to their release into the environment, and soils are one of the main reservoirs for nanoparticles. As nanoparticles can be particularly toxic to living organisms, the development of new approaches to the assessment of their behavior and mobility in soils is an important task. In this paper, the analytical possibilities of the dynamic extraction of CeO2 nanoparticles in a microcolumn (MC) and a rotating coiled column (RCC) are studied to evaluate the behavior of nanoparticles in soil. Differential and integral elution curves of CeO2 nanoparticles from the soil were obtained based on the data of eluate analysis by inductively coupled plasma–mass spectrometry. After pumping 100 mL of water through a microcolumn and a rotating coiled column, 0.15 and 1.37 µg of CeO2 nanoparticles are leached from the soil, respectively, which is 0.2 and 1.6% of the nanoparticles introduced. The ratio of CeO2 nanoparticles and soil mineral particles is two times higher in the MC eluate. It is found that the rotating coiled column enables the estimation of nanoparticles maximum mobility of nanoparticles in soil because of the minimization of the effect of its structure on their transport. The microcolumn, preserving the soil structure, ensures the estimation of the mobility of nanoparticles in a real soil column most accurately. We also studied the effect of the modification of the surface of CeO2 nanoparticles with citric acid on their mobility in soil. CeO2 nanoparticles modified with citric acid have higher mobility in soil compared to unmodified nanoparticles.


soil chernozem nanoparticles cerium oxide mobility 



The authors are grateful to O.B. Rogova (Dokuchaev Soil Institute, Moscow) for providing the soil sample.


This work was supported by the Russian Science Foundation, project no. 17-73-10338.


  1. 1.
    Tjong, S.C., Mater. Sci. Eng., R, 2013, vol. 74, no. 10, p. 281.CrossRefGoogle Scholar
  2. 2.
    Zhang, L., Gu, F.X., Chan, J.M., Wang, A.Z., Langer, R.S., and Farokhzad, O.C., Clin. Pharmacol. Ther., 2008, vol. 83, no. 5, p. 761.CrossRefGoogle Scholar
  3. 3.
    Sanvicens, N. and Marco, M.P., Trends Biotechnol., 2008, vol. 26, no. 8, p. 425.CrossRefGoogle Scholar
  4. 4.
    Kokura, S., Handa, O., Takagi, T., Ishikawa, T., Naito, Y., and Yoshikawa, T., Nanomedicine, 2010, vol. 6, no. 4, p. 570.CrossRefGoogle Scholar
  5. 5.
    Pardeike, J., Hommoss, A., and Muller, R.H., Int. J. Pharm., 2009, vol. 366, nos. 1–2, p. 170.CrossRefGoogle Scholar
  6. 6.
    Shtykov, S.N., Nanoob”ekty i nanotekhnologii v khimicheskom analize (Nano-Objects and Nanotechnologies in Chemical Analysis), vol. 20 of Problemy analiticheskoi khimii (Problems of Analytical Chemistry), Moscow: Nauka, 2015.Google Scholar
  7. 7.
    Nowack, B. and Bucheli, T.D., Environ. Pollut., 2007, vol. 150, no. 1, p. 5.CrossRefGoogle Scholar
  8. 8.
    Biswas, P. and Wu, C.Y., J. Air Waste Manage. Assoc, 2005, vol. 55, no. 6, p. 708.CrossRefGoogle Scholar
  9. 9.
    Buzea, C., Pacheco, I.I., and Robbie, K., Biointerphases, 2007, vol. 2, no. 4, MR17.CrossRefGoogle Scholar
  10. 10.
    Soenen, S.J., Rivera-Gil, P., Montenegro, J.M., Parak, W.J., De Smedt, S.C., and Braeckmans, K., Nano Today, 2011, vol. 6, no. 5, p. 446.CrossRefGoogle Scholar
  11. 11.
    Srivastava, V., Gusain, D., and Sharma, Y.C., Ind. Eng. Chem. Res., 2015, vol. 54, no. 24, p. 6209.CrossRefGoogle Scholar
  12. 12.
    Sharma, V.K., Filip, J., Zboril, R., and Varma, R.S., Chem. Soc. Rev., 2015, vol. 44, no. 23, p. 8410.CrossRefGoogle Scholar
  13. 13.
    Peijnenburg, W., Praetorius, A., Scott-Fordsmand, J., and Cornelis, G., Environ. Pollut., 2016, vol. 218, p. 1365.CrossRefGoogle Scholar
  14. 14.
    Batley, G.E., Kirby, J.K., and McLaughlin, M.J., Acc. Chem. Res., 2013, vol. 46, no. 3, p. 854.CrossRefGoogle Scholar
  15. 15.
    Chhipa, H., Environ. Chem. Lett., 2017, vol. 15, no. 1, p. 15.CrossRefGoogle Scholar
  16. 16.
    Kah, M., Front. Chem., 2015, vol. 3, p. 64.CrossRefGoogle Scholar
  17. 17.
    Liu, R. and Lal, R., Sci. Total Environ., 2015, vol. 514, p. 131.CrossRefGoogle Scholar
  18. 18.
    Keller, A.A. and Lazareva, A., Environ. Sci. Technol. Lett., 2014, vol. 1, no. 1, p. 65.CrossRefGoogle Scholar
  19. 19.
    Rico, C.M., Lee, S.C., Rubenecia, R., Mukherjee, A., Hong, J., Peralta-Videa, J.R., and Gardea-Tor-resdey, J.L., J. Agric. Food Chem., 2014, vol. 62, no. 40, p. 9669.CrossRefGoogle Scholar
  20. 20.
    Rico, C.M., Barrios, A.C., Tan, W., Rubenecia, R., Lee, S.C., Varela-Ramirez, A., Peralta-Videa, J.R., and Gardea-Torresdey, J.L., Environ. Sci. Pollut. Res., 2015, vol. 22, p. 10551.CrossRefGoogle Scholar
  21. 21.
    Zhao, L., Peng, B., Hernandez-Viezcas, J.A., Rico, C., Sun, Y., Peralta-Videa, J.R., Tang, X., Niu, G., Jin, L., Varela, A., Zhang, J., and Gardea-Torresdey, J.L., ACS Nano, 2012, vol. 6, p. 9615.CrossRefGoogle Scholar
  22. 22.
    Rico, C.M., Hong, J., Morales, M.I., Zhao, L., Barrios, A.C., Zhang, J., Peralta-Videa, J.R., and Gardea-Torresdey, J.L., Environ. Sci. Technol., 2013, vol. 47, p. 5635.CrossRefGoogle Scholar
  23. 23.
    Barrios, A.C., Rico, C.M., Trujillo-Reyes, J., Medina-Velo, I.A., Peralta-Videa, J.R., and Gardea-Torresdey, J.L., Sci. Total Environ., 2016, vol. 563−564, p. 956.CrossRefGoogle Scholar
  24. 24.
    Trujillo-Reyes, J., Vilchis-Nestor, A.R., Majumdar, S., Peralta-Videa, J.R., and Gardea-Torresdey, J.L., J. Hazard. Mater., 2013, vol. 263, p. 677.CrossRefGoogle Scholar
  25. 25.
    Lewis, J. and Sjöstrom, J., J. Contam. Hydrol., 2010, vol. 115, p. 1.CrossRefGoogle Scholar
  26. 26.
    Fedotov, P.S., Savonina, E.Yu., Spivakov, B.Ya., and Wennrich, R., J. Anal. Chem., 2012, vol. 67, no. 10, p. 851.CrossRefGoogle Scholar
  27. 27.
    Rosende, M., Savonina, E.Yu., Fedotov, P.S., Miro, M., Cerda, V., and Wennrich, R., Talanta, 2009, vol. 79, no. 4, p. 1081.CrossRefGoogle Scholar
  28. 28.
    Cornelis, G., Ryan, B., McLaughlin, M.J., Kirby, J.K., Beak, D., and Chittleborough, D., Environ. Sci. Technol., 2011, vol. 45, no. 7, p. 2777.CrossRefGoogle Scholar
  29. 29.
    Fedotov, P.S., Ermolin, M.S., and Katasonova, O.N., J. Chromatogr. A, 2015, vol. 1381, p. 202.CrossRefGoogle Scholar
  30. 30.
    Karandashev, V.K., Khvostikov, V.A., Nosenko, S.Yu., and Burmii, Zh.P., Zavod. Lab., Diagn. Mater., 2016, vol. 82, no. 7, p. 6.Google Scholar
  31. 31.
    Ermolin, M.S., Fedotov, P.S., Ivaneev, A.I., Karandashev, V.K., Fedyunina, N.N., and Es’kina, V.V., J. Anal. Chem., 2017, vol. 72, no. 5, p. 520.CrossRefGoogle Scholar
  32. 32.
    Fedotov, P.S., Vanifatova, N.G., Shkinev, V.M., and Spivakov, B.Ya., Anal. Bioanal. Chem., 2011, vol. 400, p. 1787.CrossRefGoogle Scholar
  33. 33.
    Gimbert, L.J., Haygarth, P.M., Beckett, R., and Worsfold, P.J., Environ. Chem., 2006, vol. 3, p. 184.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. S. Ermolin
    • 1
    Email author
  • N. N. Fedyunina
    • 2
  • V. K. Karandashev
    • 3
  • P. S. Fedotov
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.National University of Science and Technology “MISiS”MoscowRussia
  3. 3.Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations