Journal of Analytical Chemistry

, Volume 74, Issue 7, pp 679–685 | Cite as

Colorimetric Sensing of Dopamine Based on Peroxidase-Like Activity of Gold Nanoparticles

  • Cuifeng JiangEmail author
  • Shaoping Pang
  • Juhua Luo
  • Xueran Liu
  • Wei Guo
  • Wanquan JiangEmail author


Development of a simple and label-free colorimetric sensing assay for dopamine is urgent, because of the important roles dopamine plays in many physiological processes. Herein, a label-free colorimetric method for determination of dopamine has been proposed based on the enhancement of the peroxidase-like activity of bare gold nanoparticles (AuNPs). The assay is based on specific interactions between protonated dopamine and gold atoms through the catechol group, which induces aggregation of AuNPs and significantly enhances their peroxidase-like activity. The catalytic activity is evaluated by chromogenic reaction of 3,3',5,5'-tetramethylbenzidine with H2O2. The mechanism for enhancement of catalytic activity is discussed. The detection limit of dopamine was 25 nM by virtue of UV-Vis spectroscopy, and 0.21 μM by naked eye. The whole detection procedure can be completed in 15 min. The proposed sensor is simple, fast, cost-effective and sensitive. These advantages make this sensor a powerful tool for the determination of dopamine in water samples.


colorimetric sensing dopamine gold nanoparticles peroxidase-like activity 



This work was supported by Natural Science Foundation of China (21605128), the Natural Science Foundation of Jiangsu Province (no. BK20150427), the Initial Scientific Research Foundation of Yancheng Institute of Technology (no. xj201530) and the research fund of Collaborative Innovation Center for Ecological Building Materials (GX2015304). The authors also acknowledge the “Jiangsu Province Shuangchuang Plan” for the financial support.


The authors declare no conflict of interest.


  1. 1.
    Bromberg-Martin, E.S., Matsumoto, M., and Hikosaka, O., Neuron, 2010, vol. 68, p. 815.CrossRefGoogle Scholar
  2. 2.
    Flagel, S.B., Clark, J.J., Robinson, T.E., Mayo, L., Czuj, A., Willuhn, I., Akers, C.A., Clinton, S.M., Phillips, P.E., and Akil, H., Nature, 2011, vol. 469, p. 53.CrossRefGoogle Scholar
  3. 3.
    Kriks, S., Shim, J.W., Piao, J., Ganat, Y.M., Wakeman, D.R., Xie, Z., Carrillo-Reid, L., Auyeung, G., Antonacci, C., Buch, A., Yang, L., Beal, M.F., Surmeier, D.J., Kordower, J.H., Tabar, V., and Studer, L., Nature, 2011, vol. 480, p. 547.CrossRefGoogle Scholar
  4. 4.
    Yang, L., Liu, D., Huang, J.S., and You, T.Y., Sens. Actuators, B, 2014, vol. 193, p. 166.CrossRefGoogle Scholar
  5. 5.
    Wang, Y., Li, Y.M., Tang, L.H., Lu, J., and Li, J.H., Electrochem. Commun., 2009, vol. 11, p. 889.CrossRefGoogle Scholar
  6. 6.
    Thirumalraj, B., Palanisamy, S., Sakthinathan, S., Chen, S.M., and Lou, B.S., J. Colloid Interface Sci., 2016, vol. 462, p. 375.CrossRefGoogle Scholar
  7. 7.
    Stewart, A.J., Hendry, J., and Dennany, L., Anal. Chem., 2015, vol. 87, p. 11847.CrossRefGoogle Scholar
  8. 8.
    Shang, L. and Dong, S., Nanotechnology, 2008, vol. 19, p. 095502.Google Scholar
  9. 9.
    Porcel-Valensuela, M., Salinas-Castillo, A., Morallón, E., and Montilla, F., Sens. Actuators, B, 2016, vol. 222, p. 63.CrossRefGoogle Scholar
  10. 10.
    Palanisamy, S., Sakthinathan, S., Chen, S.M., Thirumalraj, B., Wu, T.H., Lou, B.S., and Liu, X., Carbohyd. Polym., 2016, vol. 135, p. 267.CrossRefGoogle Scholar
  11. 11.
    Oh, J.W., Yoon, Y.W., Heo, J., Yu, J., Kim, H., and Kim, T.H., Talanta, 2016, vol. 147, p. 453.CrossRefGoogle Scholar
  12. 12.
    Mudabuka, B., Ogunlaja, A.S., Tshentu, Z.R., and Torto, N., Sens. Actuators, B, 2016, vol. 222, p. 598.CrossRefGoogle Scholar
  13. 13.
    Luo, Y., Ma, L., Zhang, X., Liang, A., and Jiang, Z., Nanoscale Res. Lett., 2015, vol. 10, p. 937.Google Scholar
  14. 14.
    Kim, Y.R., Bong, S., Kang, Y.J., Yang, Y., Mahajan, R.K., Kim, J.S., and Kim, H., Biosens. Bioelectron., 2010, vol. 25, p. 2366.CrossRefGoogle Scholar
  15. 15.
    Fabregat, G., Estrany, F., Casas, M.T., Aleman, C., and Armelin, E., J. Phys. Chem. B, 2014, vol. 118, p. 4702.CrossRefGoogle Scholar
  16. 16.
    Amjadi, M., Manzoori, J.L., Hallaj, T., and Sorouraddin, M.H., Microchim. Acta, 2014, vol. 181, p. 671.CrossRefGoogle Scholar
  17. 17.
    Abbaspour, A., Valizadeh, H., and Khajehzadeh, A., Anal. Methods, 2011, vol. 3, p. 1405.CrossRefGoogle Scholar
  18. 18.
    Abbaspour, A., Khajehzadeh, A., and Ghaffarinejad, A., Analyst, 2009, vol. 134, p. 1692.CrossRefGoogle Scholar
  19. 19.
    Yan, X., Gu, Y., Li, C., Tang, L., Zheng, B., Li, Y., Zhang, Z., and Yang, M., Biosens. Bioelectron., 2016, vol. 77, p. 1032.CrossRefGoogle Scholar
  20. 20.
    Gorbunova, M.V., Apyari, V.V., Dmitrienko, S.G., and Garshev, A.V., Anal. Chim. Acta, 2016, vol. 936, p. 185.CrossRefGoogle Scholar
  21. 21.
    Leng, Y., Xie, K., Ye, L., Li, G., Lu, Z., and He, J., Talanta, 2015, vol. 139, p. 89.CrossRefGoogle Scholar
  22. 22.
    Lin, Y., Chen, C., Wang, C., Pu, F., Ren, J., and Qu, X.G., Chem. Commun., 2011, vol. 47, p. 1181.CrossRefGoogle Scholar
  23. 23.
    Feng, J.J., Guo, H., Li, Y.F., Wang, Y.H., Chen, W.Y., and Wang, A.J., ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 1226.CrossRefGoogle Scholar
  24. 24.
    Saha, K., Agasti, S.S., Kim, C., Li, X., and Rotello, V.M., Chem. Rev., 2012, vol. 112, p. 2739.CrossRefGoogle Scholar
  25. 25.
    Boisselier, E. and Astruc, D., Chem. Soc. Rev., 2009, vol. 38, p. 1759.CrossRefGoogle Scholar
  26. 26.
    Apyari, V.V., Arkhipova, V.V., Dmitrienko, S.G., and Zolotov, Yu.A., J. Anal. Chem., 2014, vol. 69, no. 1, p. 1.CrossRefGoogle Scholar
  27. 27.
    Jv, Y., Li, B., and Cao, R., Chem. Commun., 2010, vol. 46, p. 8017.CrossRefGoogle Scholar
  28. 28.
    Zhao, D., Chen, C.X., Lu, L.X., Yang, F., and Yang, X.R., Sens. Actuators, B, 2015, vol. 215, p. 437.CrossRefGoogle Scholar
  29. 29.
    Deng, H.H., Li, G.W., Hong, L., Liu, A.L., Chen, W., Lin, X.H., and Xia, X.H., Food. Chem., 2014, vol. 147, p. 257.CrossRefGoogle Scholar
  30. 30.
    Ni, P., Dai, H., Wang, Y., Sun, Y., Shi, Y., Hu, J., and Li, Z., Biosens. Bioelectron., 2014, vol. 60, p. 286.CrossRefGoogle Scholar
  31. 31.
    Deng, H.H., Weng, S.H., Huang, S.L., Zhang, L.N., Liu, A.L., Lin, X.H., and Chen, W., Anal. Chim. Acta, 2014, vol. 852, p. 218.CrossRefGoogle Scholar
  32. 32.
    Pail, V., Malvankar, R.B., and Sastry, M., Langmuir, 1999, vol. 15, p. 8197.CrossRefGoogle Scholar
  33. 33.
    Haiss, W., Aveyard, J., and Fernig, D.G., Anal. Chem., 2007, vol. 79, p. 4215.CrossRefGoogle Scholar
  34. 34.
    Basu, S., Jana, S., Bolisetty, S., and Pal, T., Langmuir, 2008, vol. 24, p. 5562.CrossRefGoogle Scholar
  35. 35.
    Wang, S., Chen, W., Liu, A.L., Hong, L., Deng, H.H., and Lin, X.H., ChemPhysChem, 2012, vol. 13, p. 1199.CrossRefGoogle Scholar
  36. 36.
    Ghosh, S.K. and Pal, T., Chem. Rev., 2007, vol. 107, p. 4797.CrossRefGoogle Scholar
  37. 37.
    Halas, N.J., Lal, S., Chang, W.S., Link, S., and Nordlander, P., Chem. Rev., 2011, vol. 111, p. 3913.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.School of Materials Engineering, Yancheng Institute of TechnologyYanchengJiangsuChina
  2. 2.Department of Chemistry, University of Science and Technology of China (USTC)HefeiAnhuiChina

Personalised recommendations