Journal of Analytical Chemistry

, Volume 74, Issue 7, pp 701–706 | Cite as

Cloud Point Extraction Combined with Liquid Chromatography Coupled to Tandem Mass Spectrometry for the Determination of Verapamil in Urine

  • V. O. DoroschukEmail author
  • I. Yu. Matsenko
  • Y. S. Mandzyuk
  • O. G. Makukha
  • N. O. Grytsyk


Based on cloud point extraction, a HPLC method was developed for the determination of verapamil in urine. Non-ionic surfactant Triton X-100, an environmentally friendly solvent, was used for the micelle-mediated extraction. Some parameters that influence the extraction, such as the concentration of Triton X-100, effect of pH, incubation time, equilibration temperature and centrifugation parameters, were studied and optimised. The method suggested for the HPLC‒tandem mass spectrometry determination of verapamil in urine after cloud point extraction was validated. The calibration curve was linear in the range of 0.2–50 ng/mL. The limits of detection (3σ) and quantification (10σ) were 0.06 and 0.2 ng/mL, respectively. The matrix effect (96.5%), recovery of the extraction procedure (96%) and overall “process efficiency” (92.6%) were also estimated. All data validation is consistent with international acceptance criteria and no significant matrix effect was observed. The results show that the sensitivity, metrological characteristics, ecological safety, simplicity and convenience of the suggested procedure exceed its analogues based on extraction using organic solvents.


cloud point extraction verapamil non-ionic surfactant 



The authors declare no conflict of interest.


  1. 1.
    Ledwitch, K.V., Gibbs, M.E., Barnes, R.W., and Roberts, A.G., Biochem. Pharm., 2016, vol. 118, p. 96.CrossRefGoogle Scholar
  2. 2.
    Hizoh, Z., Majoros, Z., Major, L., Gulyas, Z., Szabo, G., Kerecsen, G., Korda, A., Molnar, F., and Kiss, R.G., J. Am. Heart Assoc., 2014, vol. 3, p. 1.Google Scholar
  3. 3.
    Oldenburg, O., Eggebrecht, H., Gutersohn, A., Schaar, J., Brauck, K., Haude, M., and Baumgart, R.D., Cardiovasc. Drugs Ther., 2001, vol. 15, p. 55.CrossRefGoogle Scholar
  4. 4.
    Devane, J.G. and Butler, J., Clin. Pharm. Ther., 1999, vol. 65, p. 148.CrossRefGoogle Scholar
  5. 5.
    Harapat, S.R. and Kates, R.E., J. Chromatogr. A, 1979, vol. 170, p. 385.CrossRefGoogle Scholar
  6. 6.
    De Cicco, M., Macor, F., Robieux, I., Zanette, G., Fantin, D., Fabiani, F., Nicolosi, G., Fracasso, A., Toffoli, G., Santantonio, C., Lestuzzi, C., Matovic, M., and Boiocchi, M., Crit. Care Med., 1999, vol. 27, p. 332.CrossRefGoogle Scholar
  7. 7.
    Caetano, F.R., Gevaerd, A., Bergamini, M.F., and Marcolino, L.H., Jr., Curr. Pharm. Anal., 2011, vol. 7, p. 275.CrossRefGoogle Scholar
  8. 8.
    Rahman, N. and Hoda, M.N., Anal. Bioanal. Chem., 2002, vol. 374, p. 484.CrossRefGoogle Scholar
  9. 9.
    Özkan, Y., Yilmaz, N., Özkan, S.A., and Biryol, I., Farmaco, 2000, vol. 55, p. 376.CrossRefGoogle Scholar
  10. 10.
    Prabhakar, A.H., Giridhar, R., and Patel, V.B., Indian Drugs, 1999, vol. 36, p. 372.Google Scholar
  11. 11.
    Hamidi, S. and Jouyban, A., Anal. Methods, 2015, vol. 7, p. 5820.CrossRefGoogle Scholar
  12. 12.
    Ling, G., Zhang, P., Sun, J., Zhang, W., Fu, Q., Zhang, T., Deng, Y., and He, Z., Biomed. Chromatogr., 2011, vol. 25, p. 963.CrossRefGoogle Scholar
  13. 13.
    Ivanova, V., Zendelovska, D., Stefova, M., and Stafilov, T., J. Biochem. Biophys. Methods, 2008, vol. 70, p. 1297.CrossRefGoogle Scholar
  14. 14.
    Borges, N.C., Mendes, G.D., Barrientos-Astigarraga, R.E., Galvinas, P., Oliveira, C.H., and de Nucci, G., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2005, vol. 827, p. 165.CrossRefGoogle Scholar
  15. 15.
    Sawicki, W.J., J. Pharm. Biomed. Anal., 2001, vol. 25, p. 689.CrossRefGoogle Scholar
  16. 16.
    Negrusz, A., Wacek, B.C., Toerne, T., and Bryant, J., Chromatographia, 1997, vol. 46, p. 191.CrossRefGoogle Scholar
  17. 17.
    Paleologos, E.K., Giokas, D.L., and Karayannis, M.I., TrAC, Trends Anal. Chem., 2005, vol. 24, p. 426.CrossRefGoogle Scholar
  18. 18.
    Doroschuk, V.O., Kulichenko, S.A., and Lelyushok, S.O., J. Colloid Interface Sci., 2005, vol. 291, p. 251.CrossRefGoogle Scholar
  19. 19.
    Ojeda, C.B. and Rojas, F.S., Anal. Bioanal. Chem., 2009, vol. 394, p. 759.CrossRefGoogle Scholar
  20. 20.
    Quina, F.H. and Hinze, W.L., Ind. Eng. Chem. Res., 1999, vol. 38, p. 4150.CrossRefGoogle Scholar
  21. 21.
    Giebułtowicz, J., Kojro, G., Bus-Kwasnik, K., Rudzki, P.J., Marszałek, R., Les, A., and Wroczynski, P., J. Chromatogr. A, 2015, vol. 1423, p. 39.CrossRefGoogle Scholar
  22. 22.
    Madej, K., Persona, K., Wandas, M., and Gomółka, E., J. Chromatogr. A, 2013, vol. 1312, p. 42.CrossRefGoogle Scholar
  23. 23.
    Ren, G., Huang, Q., Wu, J., Yuan, J., Yang, G., Yan, Z., and Yao, S., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2014, vol. 953−954, p. 73.CrossRefGoogle Scholar
  24. 24.
    Qin, X.Y., Meng, J., Li, X.Y., Zhou, J., Sun, X.L., and Wen, A.D., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2008, vol. 872, p. 38.CrossRefGoogle Scholar
  25. 25.
    Ma, H., You, J., and Liu, Y., J. Sep. Sci., 2012, vol. 35, p. 1439.Google Scholar
  26. 26.
    Han, F., Yin, R., Shi, X., Jia, Q., Liu, H., Yao, H., Xu, L., and Li, S., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2008, vol. 868, p. 64.CrossRefGoogle Scholar
  27. 27.
    Matuszewski, B.K., Constanzer, M.L., and Chavez-Eng, C.M., Anal. Chem., 2003, vol. 75, p. 3019.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. O. Doroschuk
    • 1
    Email author
  • I. Yu. Matsenko
    • 1
  • Y. S. Mandzyuk
    • 1
  • O. G. Makukha
    • 1
  • N. O. Grytsyk
    • 2
  1. 1.Analytical Chemistry Department, Faculty of Chemistry, Taras Shevchenko Kyiv UniversityKyivUkraine
  2. 2.Université de Strasbourg, Faculté de Chimie de StrasbourgStrasbourg CedexFrance

Personalised recommendations