Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 6, pp 609–616 | Cite as

Square Wave Stripping Voltammetric Determination of Pantoprazole in Rabbit Plasma using Surfactant-based Pencil Graphite Electrode

  • Pakinaz Y. Khashaba
  • Hassan Refat H. Ali
  • Mohamed M. El-WekilEmail author
ARTICLES
  • 13 Downloads

Abstract

Simple, inexpensive, accurate and sensitive square wave adsorptive stripping voltammetry method depends on oxidation of anti-ulcer drug pantoprazole sodium on pencil graphite electrode using sodium dodecyl sulphate as a surfactant at pH 6.0 was introduced. The current signal due to the oxidation process as a function of the amount of the cited drug, pH of the medium, type of surfactant, frequency and adsorption time at the electrode surface was studied. The oxidation peak current varied linearly with the concentration over the range of 5 × 10–9–6 × 10–6 M. The limit of detection was 2 nM. The validity of the proposed method for pharmacokinetic study in rabbit plasma was conducted.

Keywords:

pantoprazole sodium pencil graphite electrode sodium dodecyl sulphate pharmacokinetic study 

REFERENCES

  1. 1.
    Patrick, G.L., An Introduction to Medicinal Chemistry, New York: Oxford Univ. Press, 2009, 4th ed.Google Scholar
  2. 2.
    Moustafa, A.A.M., J. Pharm. Biomed. Anal., 2000, vol. 22, no. 1, p. 45.CrossRefGoogle Scholar
  3. 3.
    El-Kommos, M.E., Khashaba, P.Y., and El-Wekil, M.M., Asian J. Biomed. Pharm. Sci., 2013, vol. 3, no. 22, p. 31.Google Scholar
  4. 4.
    Devi, O.Z. and Basavaiah, K., Int. J. ChemTech. Res., 2010, vol. 2, no. 1, p. 624.Google Scholar
  5. 5.
    Kalaichelvi, R., Rose, M.F., Vadivel, K., and Jaya-chandran, K., Int. J. Chem. Res., 2010, vol. 1, no. 1, p. 6.Google Scholar
  6. 6.
    El-Kommos, M.E., Khashaba, P.Y., and El-Wekil, M.M., Int. J. Pharm. Pharm. Sci., 2014, vol. 6, no. 5, p. 212.Google Scholar
  7. 7.
    El-Kommos, M.E., Khashaba, P.Y., and El-Wekil, M.M., J. Planar Chromatogr.—Mod. TLC, 2013, vol. 27, no. 3, p. 217.CrossRefGoogle Scholar
  8. 8.
    Gosavi, S.A., Shirkhedkar, A.A., Jaiswal, Y.S., and Surana, S., J. Planar Chromatogr.—Mod. TLC, 2007, vol. 19, no. 110, p. 302.CrossRefGoogle Scholar
  9. 9.
    Patil, V.K. and Gawad, J.B., Indian J. Res., 2013, vol. 3, no. 5, p. 231.Google Scholar
  10. 10.
    Rami, D. and Shahl, N.J., Int. Res. J. Pharm., 2013, vol. 4, no. 4, p. 161.CrossRefGoogle Scholar
  11. 11.
    Tanaka, M., Yamazaki, H., and Hakushi, H., Chirality, 1995, vol. 7, p. 612.CrossRefGoogle Scholar
  12. 12.
    Battu, P.R., Int. J. ChemTech. Res., 2009, vol. 1, no. 2, p. 275.Google Scholar
  13. 13.
    Mansour, A.M. and Sorour, O.M., Chromatographia, 2001, vol. 53, p. 478.CrossRefGoogle Scholar
  14. 14.
    Saini, V. and Gupta, V.B., Int. J. ChemTech. Res., 2009, vol. 1, p. 1094.Google Scholar
  15. 15.
    Emami, J., Rezazadeh, M., and Kalani, M., J. Liq. Chromatogr. Relat. Technol., 2014, vol. 37, no. 5, p. 681.CrossRefGoogle Scholar
  16. 16.
    Guan, J., Yan, F., Shi, S., and Wang, S., Electrophoresis, 2012, vol. 33, no. 11, p. 1631.CrossRefGoogle Scholar
  17. 17.
    Guan, J., Li, H., Yan, F., Shi, S., and Wang, S., Electrophoresis, 2014, vol. 35, no. 19, p. 2800.CrossRefGoogle Scholar
  18. 18.
    Erk, N., Anal. Biochem., 2003, vol. 323, no. 1, p. 48.CrossRefGoogle Scholar
  19. 19.
    Nigović, B. and Hocevar, S.B., Electrochim. Acta, 2013, vol. 109, p. 818.CrossRefGoogle Scholar
  20. 20.
    Elsied, A.M. and Mohamed, G.G., Int. J. Electrochem. Sci., 2015, vol. 10, p. 7147.Google Scholar
  21. 21.
    Radi, A., Farmaco, 2003, vol. 58, no. 7, p. 535.CrossRefGoogle Scholar
  22. 22.
    Florence, A.T., Tucker, I.G., and Walters, K.A., Structure/Performance Relationship in Surfactants, vol. 253 of ACS Symposium Series, Rosen, M.J., Ed., Washington, DC: Am. Chem. Soc., 1984.Google Scholar
  23. 23.
    Fendler, J. and Fendler, E., Catalysis in Micellar and Macromolecular Systems, New York: Academic, 1975.Google Scholar
  24. 24.
    Atta, N.F., Darwish, S.A., Khalil, S.E., and Galal, A., Talanta, 2007, vol. 72, p. 1438.CrossRefGoogle Scholar
  25. 25.
    Chandra, U., Kumara, S., Gilbert, B.E., and Sherigara, B.S., Int. J. Electrochem., 2011, vol. 2011, 512692.  https://doi.org/10.4061/2011/512692 CrossRefGoogle Scholar
  26. 26.
    Cain, S., Cantu, A.A., Brunnelle, R., and Lyter, A., J. Forensic. Sci., 1978, vol. 23, p. 643.CrossRefGoogle Scholar
  27. 27.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 1980.Google Scholar
  28. 28.
    Yang, R., Schulman, S.G., and Zavala, P.J., Anal. Chim. Acta, 2003, vol. 481, p. 155.CrossRefGoogle Scholar
  29. 29.
    Roche, V.F., Am. J. Pharm. Educ., 2006, vol. 70, no. 5.Google Scholar
  30. 30.
    Harvey, D., Modern Analytical Chemistry, London: McGraw-Hill, 2000.Google Scholar
  31. 31.
    Jorge, S.M.A., Pontinha, A.D.R., and Oliveira-Bretta, A.M., Electroanalysis, 2010, vol. 22, p. 625.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Pakinaz Y. Khashaba
    • 1
    • 2
  • Hassan Refat H. Ali
    • 1
  • Mohamed M. El-Wekil
    • 1
    Email author
  1. 1.Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut UniversityAsyutEgypt
  2. 2.Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Deraya UniversityEl-MinyaEgypt

Personalised recommendations