Journal of Analytical Chemistry

, Volume 74, Issue 8, pp 784–793 | Cite as

A Comparative Study of Procedures for Preparing Samples of Bottom Sediments in the Determination of Petroleum Products by Chromatographic Methods

  • V. E. KotovaEmail author
  • Yu. A. Andreev
  • M. S. Chernov’yants


A method for determining aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in bottom sediments using gas chromatography–mass spectrometry and HPLC with spectrofluorimetric detection, respectively, was developed. Various methods are studied for extracting PAHs from the matrix of a solid sample: extraction with organic solvents under mechanical stirring, ultrasonic treatment, and in a Soxhlet apparatus. The recovery depends on the method of sample treatment; it is maximum at mechanical stirring and extraction in the Soxhlet apparatus (up to 60–80%). The simplest method including mechanical stirring is optimal. A procedure for the quantitative separation of aliphatic hydrocarbons and PAHs in a wide concentration range is proposed using column chromatography on silica gel. The limits of detection for PAHs were 0.1–3 ng dry weight; RSD = 4% for benzo[a]pyrene at a concentration of 1 ng/g dry weight. The developed procedure was used to determine aliphatic hydrocarbons and PAHs in real samples of bottom sediments. The proposed option of sample preparation enables identifying and quantifying two groups of substances of petroleum components from one sample and thereby expands the possibilities of determining the source of hydrocarbon contamination of a water body.


aliphatic hydrocarbons polycyclic aromatic hydrocarbons extraction bottom sediments gas chromatography–mass spectrometry HPLC with spectrofluorimetric detection 



  1. 1.
    Yu, Y., Wang, P., Cui, Y., and Wang, Y., Anal. Chem., 2018, vol. 90, no. 1, p. 556.CrossRefGoogle Scholar
  2. 2.
    Maistrenko, V.N. and Klyuev, N.A., Ekologoanaliticheskii monitoring stoikikh organicheskikh zagryaznitelei (Ecological and Analytical Monitoring of Persistent Organic Pollutants), Moscow: BINOM. Laboratoriya znanii, 2009.Google Scholar
  3. 3.
    Handbook of Water Analysis, Nollet, L.M.L. and De Gelder, L.S.P., Eds., Boca Raton, FL: CRC, 2000.Google Scholar
  4. 4.
    ITS (Information and Technical Directory) 28-2017: Oil Production, Moscow: Byuro NDT, 2017.Google Scholar
  5. 5.
    SanPiN (Sanitary Rules and Regulations) Drinking Water. Hygienic Requirements for Water Quality of Centralized Drinking Water Supply Systems. Quality Control, Moscow, 2001. Accessed November 24, 2018.Google Scholar
  6. 6.
    GN (Sanitary-Hygienic Standard) Maximum Permissible Concentrations (MPCs) of Chemicals in Drinking Water and Cultural and Domestic Water Bodies, Moscow, 2003. Accessed November 24, 2018.Google Scholar
  7. 7.
    Order of the Ministry of Agriculture of Russia no. 552 on December 13, 2016 “On Approval of Water Quality Standards for Water Bodies of Fisheries Significance, Including Standards for Maximum Permissible Concentrations of Harmful Substances in Waters of Water Bodies of Fisheries Value”. Accessed November 24, 2018.Google Scholar
  8. 8.
    Das neue BundesBodenschutzgesetz (“Berlin Lists”, “Brandedurg Lists”). Accessed November 24, 2018.Google Scholar
  9. 9.
    Leidraad Bodemsanering: Mitteilung des Rijksinstituut voor Volksgezondheit en Milieuhygiene (“Dutch Lists”), 1994. Accessed November 24, 2018.Google Scholar
  10. 10.
    GN (Sanitary-Hygienic Standard) The Maximum Permissible Concentration (MPC) of Chemicals in the Soil, Moscow, 2006. Accessed November 24, 2018.Google Scholar
  11. 11.
    Order of the Mayor of St. Petersburg no. 891-pon August 30, 1994 “The Procedure for Determining the Extent of Damage from Land Pollution by Chemicals.” Accessed November 24, 2018.Google Scholar
  12. 12.
    Order of the Mayor-Chairman of the Government of St. Petersburg no. 891-p on August 30, 1994 “On the Introduction of a Regional Standard for Soil Protection in St. Petersburg.” Accessed January 29, 2018.Google Scholar
  13. 13.
    Kapel’kina, L.P., Garmonizatsiya ekologicheskikh standartov II (GEHS II). Promezhutochnyi tekhnicheskii otchet. Normativy kachestva okruzhayushchei sredy (Harmonization of Environmental Standards II. Intermediate Technical Report. Environmental Quality Standards), St. Petersburg, 2008. Accessed January 25, 2018.Google Scholar
  14. 14.
    Nikanorov, A.M. and Ivanik, V.M., Slovar’-spravochnik po gidrokhimii i kachestvu vod sushi (ponyatiya i opredeleniya) (Glossary on Hydrochemistry and Quality of Terrestrial Waters: Concepts and Definitions), Rostov-on-Don: ArtArtel’, 2014.Google Scholar
  15. 15.
    US EPA Method 8100: Polynuclear Aromatic Hydrocarbons, 1986. documents/8100.pdf. Accessed January 29, 2018.Google Scholar
  16. 16.
    US EPA Method 8270D: Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry, 2014. Accessed January 29, 2018.Google Scholar
  17. 17.
    US EPA Method 8275A: Semivolatile Organic Compounds (PAHs and PCBs) in Soils/Sludges and Solid Wastes Using Thermal Extraction/Gas Chromatography/Mass Spectrometry (TE/GC/MS), 1996. documents/8275a.pdf. Accessed January 29, 2018.Google Scholar
  18. 18.
    US EPA Method 8310: Polynuclear Aromatic Hydrocarbons, 1986. documents/8310.pdf. Accessed January 29, 2018.Google Scholar
  19. 19.
    US EPA Method 8410: Gas Chromatography/Fourier Transform Infrared Spectrometry for Semivolatile Organics: Capillary Column, 2014. documents/8410.pdf. Accessed January 29, 2018.Google Scholar
  20. 20.
    Kicinski, H.G., Adamek, S., and Kettrup, A., Chromatographia, 1989, vol. 28, no. 34, p. 203.CrossRefGoogle Scholar
  21. 21.
    Domine, D., Devillers, J., Garrigues, P., Budzinski, H., Chastrette, M., and Karcher, W., Sci. Total Environ., 1994, vol. 155, p. 9.CrossRefGoogle Scholar
  22. 22.
    US EPA Method 3540C: Soxhlet Extraction, 1996. /documents/3540c.pdf. Accessed January 30, 2018.Google Scholar
  23. 23.
    Tolosa, I., de Mora, S., Sheikholeslami, M.R., Villeneuve, J.-P., Bartocci, J., and Cattini, C., Mar. Pollut. Bull., 2004, no. 48, p. 44.Google Scholar
  24. 24.
    Wang, Y., Tian, Z., Zhu, H., Cheng, Z., Kang, M., Luo, C., Li, J., and Zhang, G., Sci. Total Environ., 2012, vol. 439, p. 187.CrossRefGoogle Scholar
  25. 25.
    US EPA Method 3541: Automated Soxhlet Extraction, 1994. documents/epa-3541.pdf (30.01.2018 ã.).Google Scholar
  26. 26.
    Ferreira Leite, N., Peralta-Zamora, P., and Grassi, M.T., J. Chromatogr. A, 2008, vol. 1192, p. 273.CrossRefGoogle Scholar
  27. 27.
    Gaspare, L., Machiwa, J.F., Mdachi, S.J.M., Streck, G., and Brack, W., Environ. Pollut., 2009, vol. 157, p. 24.CrossRefGoogle Scholar
  28. 28.
    Berg, B.E., Lund, H.S., Kringstad, A., and Kvernheim, A.L., Chemosphere, 1999, vol. 38, no. 3, p. 587.CrossRefGoogle Scholar
  29. 29.
    Banjoo, D.R. and Nelson, P.K., J. Chromatogr. A, 2005, vol. 1066, p. 9.CrossRefGoogle Scholar
  30. 30.
    Filipkowska, A., Lubecki, L., and Kowalewska, G., Anal. Chim. Acta, 2005, vol. 547, no. 2, p. 243.CrossRefGoogle Scholar
  31. 31.
    US EPA Method 3550C: Ultrasonic Extraction, 2007. documents/3550c.pdf. Accessed January 30, 2018.Google Scholar
  32. 32.
    US EPA Method 3546: Microwave Extraction, 2007. documents/3546.pdf. Accessed January 30, 2018.Google Scholar
  33. 33.
    US EPA Method 3560: Supercritical Fluid Extraction of Total Recoverable Petroleum Hydrocarbons, 1996. documents/3560.pdf. Accessed January 30, 2018.Google Scholar
  34. 34.
    US EPA Method 3561: Supercritical Fluid Extraction of Polynuclear Aromatic Hydrocarbons, 1996. documents/3561.pdf. Accessed January 30, 2018.Google Scholar
  35. 35.
    Amador-Muñoz, O., Villalobos-Pietrini, R., Aragón-Piña, A., Tran, T.C., Morrison, P., and Marriott, P.J., J. Chromatogr. A, 2008, vol. 1201, p. 161.CrossRefGoogle Scholar
  36. 36.
    Witt, G., Liehr, G.A., Borck, D., and Mayer, P., Chemosphere, 2009, vol. 74, p. 522.CrossRefGoogle Scholar
  37. 37.
    Qiao, M., Qia, W., Liua, H., and Qua, J., J. Chromatogr. A, 2013, vol. 1291, p. 129.CrossRefGoogle Scholar
  38. 38.
    Andersson, M., Klug, M., Eggen, O.A., and Ottesen, R.T., Sci. Total Environ., 2014, vols. 470–471, p. 1160.CrossRefGoogle Scholar
  39. 39.
    Kotova, V.E., Andreev, Yu.A., and Chernov’yants, M.S., Sorbtsionnye Khromatogr. Protsessy, 2016, vol. 16, no. 6, p. 885.Google Scholar
  40. 40.
    Kotova, V.E. and Andreev, Yu.A., RF Patent 2646402, 2018.Google Scholar
  41. 41.
    Andreev, Yu.A., Kotova, V.E., and Chernov’yants, M.S., Abstracts of Papers, Tretii s”ezd analitikov Rossii (The Third Meeting of the Analytical Chemists of Russia), Moscow: Inst. Geokhim. Anal. Khim., Ross. Acad. Nauk, 2017, p. 330. 2017.Google Scholar
  42. 42.
    Kotova, V.E., Andreev, Yu.A., and Cherno-v’yants, M.S., Voda: Khim. Ekol., 2017, no. 4, p. 71.Google Scholar
  43. 43.
    Nikanorov, A.M. and Stradomskaya, A.G., Problemy neftyanogo zagryazneniya presnovodnykh ekosistem (Problems of Oil Pollution in Freshwater Ecosystems), Rostov-on-Don: NOK, 2008.Google Scholar
  44. 44.
    Peters, K.P., Walters, C.C., and Moldowan, J.M., The Biomarker Guide, vol. 2: Biomarkers and Isotopes in Petroleum Exploration and Earth History, New York: Cambridge Univ. Press, 2005, 2nd ed.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. E. Kotova
    • 1
    • 2
    Email author
  • Yu. A. Andreev
    • 1
    • 2
  • M. S. Chernov’yants
    • 2
  1. 1.Hydrochemical InstituteRostov-on-DonRussia
  2. 2.Faculty of Chemistry, Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations