Journal of Analytical Chemistry

, Volume 74, Issue 7, pp 672–678 | Cite as

Simultaneous Determination of Copper(II) and Cobalt(II) Ions, Copper(II) and Manganese(II) Ions in Drinking Water Using Indicator Test Tubes Based on Carboxylic Cation-Exchangers

  • V. V. ZharkovaEmail author
  • L. A. Bobkova


We investigated a possibility of determining two metal ions (Cu2+ and Co2+, Cu2+ and Mn2+) in a single water sample using an indicator test tube filled with a carboxylic cation exchanger of a macrocellular (KB-2E-10, KB-2E-16) or a macroporous (Tokem-250) structure. Under dynamic conditions, the separation of the chromatographic zones of colored Cu2+ and Co2+ ions was achieved in the presence of water macro components, that is, Ca2+ and Mg2+ ions. An analytical reagent, formaldoxime, was used to determine colorless Mn2+ ions. The performance characteristics of the developed procedures are determined. The lowest limit of detection for ions was obtained using a KB-2E-16 cation exchanger; it is 0.016 mg/L for Cu2+, 0.045 mg/L for Co2+, and 0.003 mg/L for Mn2+. The proposed procedures were used to analyze real samples for the concentration of Co2+ and Cu2+ or Mn2+ and Cu2+ on their simultaneous presence. The accuracy of the results was evaluated by the standard addition method.


carboxylic cation exchangers test determination of Mn(II) Co(II) and Cu(II) ions indicator tubes 



  1. 1.
    SanPiN (Sanitary Rules and Norms) Drinking Water and Water Supply of Populated Areas, Moscow, 2011.Google Scholar
  2. 2.
    Zolotov, Yu.A. Tsizin, G.I., Dmitrienko, S.G., and Morosanova, E.I., Sorbtsionnoe kontsentrirovanie mikrokomponentov iz rastvorov. Primenenie v neorganicheskom analize (Adsorption Preconcentration of Trace Components from Solutions: Application in Inorganic Analysis), Moscow: Nauka, 2007.Google Scholar
  3. 3.
    Zolotov, Yu.A., Problemy analiticheskoi khimii. Vnelaboratornyi khimicheskii analiz (Problems of Analytical Chemistry: Field Chemical Analysis), Moscow: Nauka, 2010.Google Scholar
  4. 4.
    Ivanov, V.M., Monogarova, O.V., and Oskolok, K.V., J. Anal. Chem., 2015, vol. 70, no. 10, p. 1165.CrossRefGoogle Scholar
  5. 5.
    Khamizov, R.Kh., Ivanov, V.A., and Tikhonov, N.A., Ion Exch. Solvent Extr., 2011, vol. 20, p. 182.Google Scholar
  6. 6.
    Gaiduk, O.V., Pantaler, R.P., Grebenyuk, N.N., and Ostrovskaya, V.M., J. Anal. Chem., 2009, vol. 64, no. 2, p. 201.CrossRefGoogle Scholar
  7. 7.
    Egorova, L.S., Chebotarev, V.K., Traber, L.V., and Varlamova, O.V., Izv. Altaisk. Gos. Univ., 2008, no. 3, p. 57.Google Scholar
  8. 8.
    Tikhonova, L.P., Pisareva, T.S., Svarkovskaya, I.P., Zakutevskii, O.I. Shaposhnikova, T.A., Goba, V.E., Kobulei, O.P., and Lysenko, A.A., Khim., Fiz. Tekhnol. Poverkhn., 2011, vol. 2, no. 3, p. 300.Google Scholar
  9. 9.
    Zolotov, Yu.A., Ivanov, V.M., and Amelin, V.G., Khimicheskie test-metody analiza (Chemical Test Methods of Analysis), Moscow: Editorial URSS, 2002.Google Scholar
  10. 10.
    Ivanov, V.M. and Kochelaeva, G.A., Vestn. Mosk. Univ., Ser. 2: Khim., 2001, vol. 42, no. 2, p. 103.Google Scholar
  11. 11.
    Losev, V.N., Didukh, S.L., Mukhina, A.N., and Trofimchuk, A.K., J. Anal. Chem., 2015, vol. 70, no. 6, p. 677.CrossRefGoogle Scholar
  12. 12.
    Losev, V.N. and Didukh, S.L., Zh. Sib. Fed. Univ., Khim., 2010, no. 3, p. 64.Google Scholar
  13. 13.
    Ostrovskaya, V.M., Prokopenko, O.A., and Utkin, A.S., RF Patent 2521368, Byull. Izobret., 2012, no. 18.Google Scholar
  14. 14.
    Savvin, S.B., Dedkova, V.P., and Shvoeva, O.P., Russ. Chem. Rev., 2000, vol. 69, no. 3, p. 187.CrossRefGoogle Scholar
  15. 15.
    Gavrilenko, N.A., Saranchina, N.V., and Gavrilenko, M.A., Analitika Kontrol’, 2016, vol. 20, no. 4, p. 330.Google Scholar
  16. 16.
    Saranchina, N.V., Mikheev, I.V., Gavrilenko, N.A., Proskurnin, M.A., and Gavrilenko, M.A., Analitika Kontrol’, 2014, vol. 18, no. 1, p. 105.Google Scholar
  17. 17.
    Kononova, O.N., Fedorova, N.V., Kolesnikova, E.P., Luk’yanov, A.N., Kalyakina, O.P., Kachin, S.V., and Kholmogorov, A.G., RF Patent 2223488, Byull. Izobret., 2004, no. 13.Google Scholar
  18. 18.
    Kononova, O.N., Fedorova, N.V., Luk’yanov, A.N., Kachin, S.V., and Kholmogorov, A.G., RF Patent 2262102, Byull. Izobret., 2005, no. 28.Google Scholar
  19. 19.
    Kalyakina, O.P., Kononova, O.N., Kachin, S.V., and Kholmogorov, A.G., RF Patent 2267778, Byull. Izobret., 2006, no. 1.Google Scholar
  20. 20.
    Bobkova, L.A., Odnostorontseva, T.V., and Kozik, V.V., Polzunov. Vestn., 2009, no. 3, p. 209.Google Scholar
  21. 21.
    Pyatnitskii, I.V., Analiticheskaya khimiya kobal’ta (Analytical Chemistry of Cobalt), Moscow: Nauka, 1965.Google Scholar
  22. 22.
    Lavrukhina, A.K. and Yukina, L.V., Analiticheskaya khimiya margantsa (Analytical Chemistry of Manganese), Moscow: Nauka, 1974.Google Scholar
  23. 23.
    Schwarzenbach, G. and Flaschka, H., Die komplexometrische Titration, Stuttgard: Ferdinand Enke, 1965.Google Scholar
  24. 24.
    Neorganicheskaya khimiya. Khimiya perekhodnykh elementov (Inorganic Chemistry: Chemistry of Transition Elements), 3 vols., Tret’yakov, Yu.D., Ed., Moscow: Akademiya, 2007, vol. 3, book 1.Google Scholar
  25. 25.
    Izmailov, N.A., Elektrokhimiya rastvorov (Electrochemistry of Solutions), Moscow: Khimiya, 1976.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, National Research Tomsk State UniversityTomskRussia

Personalised recommendations