Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 7, pp 715–721 | Cite as

Ligand Function of Ion-Selective Electrodes Reversible to Zinc and Cobalt Thiocyanate Complexes: Causes of Formation, Mathematical Description, and Analytical Applications

  • Yu. V. MatveichukEmail author
  • E. M. Rakhman’ko
ARTICLES
  • 5 Downloads

Abstract

The manifestation of the ligand function of \({\text{Zn}}\left( {{\text{NCS}}} \right)_{4}^{{2 - }}{\text{-}}\) and \({\text{Co}}\left( {{\text{NCS}}} \right)_{4}^{{2 - }}{\text{-}}\)selective electrodes based on higher quaternary ammonium salts is explained by the exchange displacement of zinc and cobalt thiocyanates by SCN ions from the membrane into the near-electrode layer of the solution. Its action is limited by the dissociation of the quaternary ammonium salt as an associate with \({\text{Zn}}\left( {{\text{NCS}}} \right)_{4}^{{2 - }}\) and \({\text{Co}}\left( {{\text{NCS}}} \right)_{4}^{{2 - }}.\) ions. The effect of the background concentration of CoCl2 or ZnCl2 on the selectivity of \({\text{Zn}}\left( {{\text{NCS}}} \right)_{4}^{{2 - }}{\text{-}}\) and \({\text{Co}}\left( {{\text{NCS}}} \right)_{4}^{{2 - }}{\text{-}}\)selective electrodes based on higher quaternary ammonium salts to SCN ions is studied. The introduction of CoCl2 or ZnCl2 into the solution binds cobalt or zinc ions released from the membrane into thiocyanate complexes. The high selectivity of the \({\text{Zn}}\left( {{\text{NCS}}} \right)_{4}^{{2 - }}{\text{-}}\) and \({\text{Co}}\left( {{\text{NCS}}} \right)_{4}^{{2 - }}{\text{-}}\)selective electrodes to SCN ions is due to the higher extraction ability of the cobalt and zinc complexes with SCN ions compared to acid complexes with the competing anions. It is demonstrated that \({\text{Zn}}\left( {{\text{NCS}}} \right)_{4}^{{2 - }}{\text{-}}\) and \({\text{Co}}\left( {{\text{NCS}}} \right)_{4}^{{2 - }}{\text{-}}\)selective electrodes can be used for the determination of SCN ions in process solutions in the production of polyacrylonitrile fibers.

Keywords:

ligand function direct potentiometry ion-selective electrodes 

Notes

REFERENCES

  1. 1.
    Rakhman’ko, E.M., Doctoral (Chem.) Dissertation, Minsk: Belarusian State Univ., 1994.Google Scholar
  2. 2.
    Starobinets, G.L., Rakhman’ko, E.M., and Lomako, V.L., Zh. Anal. Khim., 1981, vol. 36, no. 7, p. 1305.Google Scholar
  3. 3.
    Rakhman’ko, E.M., Lomako, V.L., Poklonskaya, T.E., Kachanovich, I.V., and Serdyukova, I.E., Zh. Anal. Khim., 1995, vol. 50, no. 2, p. 200.Google Scholar
  4. 4.
    Rakhman’ko, E.M., Lomako, S.V., and Lomako, V.L., J. Anal. Chem., 2001, vol. 56, no. 10, p. 957.CrossRefGoogle Scholar
  5. 5.
    Rakhman’ko, E.M., Lomako, S.V., and Lomako, V.L., J. Anal. Chem., 2000, vol. 55, no. 4, p. 363.CrossRefGoogle Scholar
  6. 6.
    Aslan, N., Kenar, A., Atakol, O., and Kiliç, E., Erciyes Univ. Fen Bilimleri Enst. Derg., 2009, vol. 25, nos. 1–2, p. 237.Google Scholar
  7. 7.
    Ganjali, M.R., Norouzi, P., Faridbod, F., and Pourjavid, M.R., J. Iran. Chem. Soc., 2007, vol. 4, no. 1, p. 1.CrossRefGoogle Scholar
  8. 8.
    Wen-Ju Xu, Ya-Qin Chai, Ruo Yuan, and Su-Li Liu, Anal. Bioanal. Chem., 2006, vol. 385, p. 926.CrossRefGoogle Scholar
  9. 9.
    Won-Sik Han, Tae-Kee Hong, and Young-Hoon Lee, Am. J. Anal. Chem., 2011, vol. 2, p. 731.CrossRefGoogle Scholar
  10. 10.
    Benvidi, A., Ghanbarzadeh, M.T., Dehghan, M., Mazloum-Ardakani, M., and Vafazadeh, R., Chin. Chem. Lett., 2014, vol. 25, no. 12, p. 1639.CrossRefGoogle Scholar
  11. 11.
    Xie, W.J. and Gao, Y.Q., J. Phys. Chem. Lett., 2013, vol. 4, p. 4247.CrossRefGoogle Scholar
  12. 12.
    Egorov, V.V., Rakhman’ko, E.M., and Rat’ko, A.A., Anion-selective electrodes with liquid membranes, in Encyclopedia of Sensors, Stevenson Ranch, CA: Am. Sci. Publ., 2006, vol. 1, p. 211.Google Scholar
  13. 13.
    Starobinets, G.L., Rakhman’ko, E.M., and Lomako, V.L., Zh. Anal. Khim., 1981, vol. 36, no. 7, p. 1305.Google Scholar
  14. 14.
    Koryta, J. and Stulic, K., Iontove-Selektivni Elektrody (Ion-Selective Electrodes), Prague: Academia, 1984.Google Scholar
  15. 15.
    Rakhman’ko, E.M., Matveichuk, Yu.V., and Yasinetskii, V.V., Vestn. Nats. Akad. Nauk Belarusi, Ser. Khim. Nauki, 2012, no. 2, p. 47.Google Scholar
  16. 16.
    Matveichuk, Yu.V., Rakhman’ko, E.M., Yasinetskii, V.V., and Stanishevskii, L.S., Metody Ob”ekty Khim. Anal., 2012, vol. 7, no. 4, p. 164.Google Scholar
  17. 17.
    Egorov, V.V., Rakhman’ko, E.M., Gulevich, A.L., Lomako, S.V., and Rat’ko, A.A., Russ. J. Coord. Chem., 2002, vol. 28, no. 10, p. 709.CrossRefGoogle Scholar
  18. 18.
    Rakhman’ko, E.M., Matveichuk, Yu.V., and Kachanovich, I.V., Rodanidnye kompleksy metallov v ekstraktsii i ionometrii (Thiocyanate Metal Complexes in Extraction and Potentiometry), Minsk: Belarus Gos. Univ., 2017.Google Scholar
  19. 19.
    Rakhman’ko, E.M., Matveichuk, Yu.V., and Yasinetskii, V.V., Vestn. Nats. Akad. Nauk Belarusi, Ser. Khim. Nauki, 2012, no. 3, p. 54.Google Scholar
  20. 20.
    Rabinovich, V.A. and Khavin, Z.Ya., Kratkii khimicheskii spravochnik (Brief Handbook on Chemistry), St. Petersburd: Khimiya, 1994.Google Scholar
  21. 21.
    Spravochnik khimika (Chemist Handbook), 6 vols., Leningrad: Khimiya, 1965, vol. 3.Google Scholar
  22. 22.
    Kratkii spravochnik po khimii (Short Guide to Chemistry), Kurilenko, O.D., Ed., Kiev: Naukova Dumka, 1974.Google Scholar
  23. 23.
    Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook on Analytical Chemistry), Moscow: Khimiya, 1989.Google Scholar
  24. 24.
    Williams, W.J., Handbook of Anion Determination, London: Butterworth, 1979. Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Belarusian State UniversityMinskBelarus

Personalised recommendations