Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 3, pp 205–212 | Cite as

Solid-Phase Extraction of Organic Substances: Unconventional Methods and Approaches

  • P. S. FedotovEmail author
  • G. I. Malofeeva
  • E. Yu. Savonina
  • B. Ya. Spivakov
REVIEWS

Abstract

Actively developing “unconventional” methods for the solid-phase extraction (SPE) of organic substances, for example, solid-phase microextraction, solid-phase dynamic extraction, dispersive solid-phase extraction, matrix solid-phase dispersion, microextraction in a packed syringe, etc., are characterized. The main distinctive features of the methods and the fields and prospects for their application are considered. Solid-phase microextraction is most popular, mainly because of a possibility of the full automation of the separation and determination of analytes and the ease of combination with gas and liquid chromatography, as well as with other analytical methods.

Keywords:

solid-phase microextraction solid-phase dynamic extraction dispersive solid-phase extraction matrix solid-phase dispersion organic substances 

Notes

REFERENCES

  1. 1.
    Beyermann, K., Organic Trace Analysis, Chichester: Ellis Horwood, 1984.Google Scholar
  2. 2.
    Thurman, E.V. and Mills, M.S., Solid-Phase Extraction: Principles and Practice, New York: Wiley, 1998.Google Scholar
  3. 3.
    Maistrenko, V.N. and Klyuev, N.A., Ekologo-analiticheskii monitoring stoikikh organicheskikh zagryaznitelei (Ecological and Analytical Monitoring of Persistent Organic Pollutants), Moscow: Binom. Laboratoriya znanii, 2009.Google Scholar
  4. 4.
    Drugov, Yu.S. and Rodin, A.A., Probopodgotovka v ekologicheskom analize: Prakticheskoe rukovodstvo (Sample Preparation in Environmental Analysis: A Practical Guide), Moscow: Binom. Laboratoriya znanii, 2013, 4th ed.Google Scholar
  5. 5.
    Hennion, M.C., J. Chromatogr. A, 1999, vol. 856, p. 3.CrossRefGoogle Scholar
  6. 6.
    Spivakov, B., Malofeeva, G., and Petrukhin, O., Anal. Sci., 2006, vol. 22, p. 503.CrossRefGoogle Scholar
  7. 7.
    Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V., and Cerdà, V., TrAC, Trends Anal. Chem., 2016, vol. 80, p. 641.CrossRefGoogle Scholar
  8. 8.
    Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V., and Cerdà, V., TrAC, Trends Anal. Chem., 2016, vol. 80, p. 655.CrossRefGoogle Scholar
  9. 9.
    Płotka-Wasylka, J., Szczepańska, N., De la Guardia, M., and Namieśnik, J., TrAC, Trends Anal. Chem., 2015, vol. 73, p. 19.CrossRefGoogle Scholar
  10. 10.
    Borisova, D., Statkus, M., Tsysin, G., and Zolotov, Yu., Sep. Sci. Technol., 2016, vol. 51, no. 12, p. 1979.CrossRefGoogle Scholar
  11. 11.
    Souza-Silva, É.A., Jiang, R., Rodríguez-Lafuente, A., Gionfriddo, E., and Pawliszyn, J., TrAC, Trends Anal. Chem., 2015, vol. 71, p. 224.CrossRefGoogle Scholar
  12. 12.
    Souza-Silva, É.A., Gionfriddo, E., and Pawliszyn, J., TrAC, Trends Anal. Chem., 2015, vol. 71, p. 236.CrossRefGoogle Scholar
  13. 13.
    Souza-Silva, É.A., Reyes-Garcés, N., Gómez-Ríos, G.A., Boyaci, E., Bojko, B., and Pawliszyn, J., TrAC, Trends Anal. Chem., 2015, vol. 71, p. 249.CrossRefGoogle Scholar
  14. 14.
    Piri-Moghadam, H., Ahmadi, F., and Pawliszyn, J., TrAC, Trends Anal. Chem., 2016, vol. 85, p. 133.CrossRefGoogle Scholar
  15. 15.
    Moein, M.M., Said, R., Bassyouni, F., and Abdel-Rehim, M., J. Anal. Methods Chem., 2014, 921350. http://dx.org/10.1155/2014/921350. Accessed March 28, 2018.Google Scholar
  16. 16.
    Zhang, Q.-H., Zhou, L.-D., Chen, H., Wang, Ch.-Zh., Xia, Zh.-N., and Yuan, Ch.-S., TrAC, Trends Anal. Chem., 2016, vol. 80, p. 57.CrossRefGoogle Scholar
  17. 17.
    Chang-Hua Xu, Ch.-H., Chen, G.-Sh., Xiong, Zh.-H., Fan, Y.-X., Wang, X.-Ch., and Liu, Y., TrAC, Trends Anal. Chem., 2016, vol. 80, p. 12.CrossRefGoogle Scholar
  18. 18.
    Bojko, B., Reyes-Garcés, N., Bessonneau, V., Gorynski, K., Mousavi, F., Souza-Silva, É.A., and Pawliszyn, J., TrAC, Trends Anal. Chem., 2014, vol. 61, p. 168.CrossRefGoogle Scholar
  19. 19.
    Pawliszyn, J., Handbook of Solid Phase Microextraction, Beijing: Chemical Industry, 2009.Google Scholar
  20. 20.
    Ai, J., Anal. Chem., 1997, vol. 69, p. 1230.CrossRefGoogle Scholar
  21. 21.
    Arthur, C.L., Killam, L.M., Buchholz, K.D., Pawliszyn, J., and Berg, J.R., Anal. Chem., 1992, vol. 64, p. 1960.CrossRefGoogle Scholar
  22. 22.
    Pawliszyn, J., Solid Phase Microextraction: Theory and Practice, New York: Wiley, 1997.Google Scholar
  23. 23.
    Applications of Solid Phase Microextraction, Pawliszyn, J., Ed., Cambridge: R. Soc. Chem., 1999.Google Scholar
  24. 24.
    Ai, J., Anal. Chem., 1997, vol. 69, p. 3260.CrossRefGoogle Scholar
  25. 25.
    Petretto, G.L., Urgeghe, P.P., Mascia, I., Fadda, C., Rourke, J.P., and Pintore, G., Eur. Food Res. Technol., 2017, vol. 243, no. 5, p. 735.CrossRefGoogle Scholar
  26. 26.
    Wang, T.-M., Ding, L.-Q., Jin, H.-J., Shi, R., Wu, J.-S., Zhu, L., Jia, Y.-Q., and Ma, Y.-M., RSC Adv., 2015, vol. 5, no. 38, p. 29631.CrossRefGoogle Scholar
  27. 27.
    Castro, L.F., Ross, C.F., and Vixie, K.R., Food Anal. Methods, 2015, vol. 8, no. 8, p. 2115.CrossRefGoogle Scholar
  28. 28.
    Gullick, D.R., Bruckner, J.V., White, C.A., Chen, C., Cummings, B.S., and Bartlett, M.G., J. AOAC Int., 2016, vol. 99, no. 3, p. 813.CrossRefGoogle Scholar
  29. 29.
    Walorczyk, S., Drożdżyński, D., and Gnusowski, B., Talanta, 2011, vol. 85, p. 1856.CrossRefGoogle Scholar
  30. 30.
    Chen, H., Gao, G., Liu, P., Pan, R., Liu, X., and Lu, Ch., Food Anal. Methods, 2016, vol. 9, no. 8, p. 2374.CrossRefGoogle Scholar
  31. 31.
    Tascone, O., Shirshikova, M., Roy, C., and Meierhenrich, U.J., Anal. Bioanal. Chem., 2014, vol. 406, no. 30, p. 8041.CrossRefGoogle Scholar
  32. 32.
    Fang, Y., Tian, W., Pei, F., Li, P., Shao, X., Fan, Y., and Hu, Q., Food Chem., 2017, vol. 229, p. 347.CrossRefGoogle Scholar
  33. 33.
    Banerjee, K., Utture, S., Dasgupta, S., Kandaswamy, C., Pradhan, S., Kulkarni, S., and Adsule, P., J. Chromatogr. A, 2012, vol. 1270, p. 283.CrossRefGoogle Scholar
  34. 34.
    Herrero, A., Ortiz, M.C., and Sarabia, L.A., J. Chromatogr. A, 2013, vol. 1288, p. 111.CrossRefGoogle Scholar
  35. 35.
    González-Curbelo, M.A., Socas-Rodríguez, B., Herrera-Herrera, A.V., González-Sáloma, J., Hernández-Borges, J., and Rodríguez-Delgado, M.A., TrAC, Trends Anal. Chem., 2015, vol. 71, p. 169.CrossRefGoogle Scholar
  36. 36.
    Usui, K., Hayashizaki, Y., Hashiyada, M., and Masato, F., Leg. Med., 2012, vol. 14, no. 6, p. 286.CrossRefGoogle Scholar
  37. 37.
    Kaczyński, P., Łozowicka, B., Jankowska, M., and Hrynko, I., Talanta, 2016, vol. 152, p. 127.CrossRefGoogle Scholar
  38. 38.
    Gao, L. and Wei, Y., J. Sep. Sci., 2016, vol. 39, no. 16, p. 3186.CrossRefGoogle Scholar
  39. 39.
    Fabrizi, G., Fioretti, M., and Rocca, L.M., Biomed. Chromatogr., 2016, vol. 30, no. 8, p. 1297.CrossRefGoogle Scholar
  40. 40.
    Garg, P., Pardasani, D., Mazumder, A., Purohit, A., and Dubey, D.K., Anal. Bioanal. Chem., 2011, vol. 399, p. 955.CrossRefGoogle Scholar
  41. 41.
    Villaverde-de-Sáa, E., Quintana, J.B., Rodil, R., Ferrero-Refojos, R., Rubí, E., and Cela, R., Anal. Bioanal. Chem., 2012, vol. 402, p. 509.CrossRefGoogle Scholar
  42. 42.
    Acosta-Tejada, G.M., Medina-Peralta, S., Moguel-Ordóñez, V.B., and Muñoz-Rodríguez, D., Anal. Bioanal. Chem., 2011, vol. 400, p. 885.CrossRefGoogle Scholar
  43. 43.
    Rodríguez-González, N., González-Castro, M.J., Beceiro-González, E., and Muniategui-Lorenzo, S., Food Chem., 2015, vol. 173, p. 391.CrossRefGoogle Scholar
  44. 44.
    Gutiérrez Valencia, T.M. and García de Llasera, M.P., J. Chromatogr. A, 2011, vol. 1218, p. 6869.CrossRefGoogle Scholar
  45. 45.
    Acosta Rodrigues, S., Souza Caldas, S., and Primel, E.G., Anal. Chim. Acta, 2010, vol. 678, p. 82.CrossRefGoogle Scholar
  46. 46.
    Ramos, J.J., Rial-Otero, R., Ramos, L., and Capelo, J.L., J. Chromatogr. A, 2008, vol. 1212, p. 145.CrossRefGoogle Scholar
  47. 47.
    Barfi, B., Asghari, A., Rajabi, M., Barfi, A., and Saeidi, I., J. Chromatogr. A, 2013, vol. 1311, p. 30.CrossRefGoogle Scholar
  48. 48.
    Schenck, F.J. and Wagner, R., Food. Addit. Contam., 1995, vol. 12, no. 4, p. 535.CrossRefGoogle Scholar
  49. 49.
    Li, J., Liu, D., Wu, T., Zhao, W., Zhou, Z., and Wang, P., Food Chem., 2014, vol. 151, p. 47.CrossRefGoogle Scholar
  50. 50.
    Chung, S.W.C. and Chen, B.L.S., J. Chromatogr. A, 2011, vol. 1218, p. 5555.CrossRefGoogle Scholar
  51. 51.
    Djatinika, R., Hsieh, C.-C., Chen, J.-M., and Ding, W.-H., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2016, vol. 1036, p. 93.CrossRefGoogle Scholar
  52. 52.
    Villaverde-de-Sáa, E., Rodil, R., Quintana, J.B., and Cela, R., J. Chromatogr. A, 2016, vol. 1459, p. 57.CrossRefGoogle Scholar
  53. 53.
    Barros de Oliveira, G., Menezes de Castro Gomes Vieira, C., Orlando, R.M., and Ferreira Faria, A., Food Chem., 2017, vol. 233, p. 11.CrossRefGoogle Scholar
  54. 54.
    Hong, B., Wang, Z., Xu, T., Li, Ch., and Li, W., J. Pharm. Biomed. Anal., 2015, vol. 107, p. 464.CrossRefGoogle Scholar
  55. 55.
    Wei, Z., Pan, Y., Li, L., Huang, Y., Qi, X., Luo, M., Zu, Yu., and Fu, Yu., J. Sep. Sci., 2014, vol. 37, no. 21, p. 3045.CrossRefGoogle Scholar
  56. 56.
    dos Santos, E.S.D., Navickiene, S., Wanderley, K.A., de Sá, G.F., and Júnior, S.A., J. Liq. Chromatogr. Relat. Technol., 2013, vol. 36, no. 13, p. 1802.Google Scholar
  57. 57.
    Mu, G., Liu, H., Xu, L., Tian, L., and Luan, F., Food Anal. Methods, 2012, vol. 5, no. 1, p. 148.CrossRefGoogle Scholar
  58. 58.
    Salemi, A., Shafiei, E., and Vosough, M., Talanta, 2012, vol. 101, p. 504.CrossRefGoogle Scholar
  59. 59.
    Iparraguirre, A., Rodil, R., Quintana, J.B., Bizkarguenaga, E., Prieto, A., Zuloaga, O., Cela, R., and Fernández, L.A., J. Chromatogr. A, 2014, vol. 1360, p. 65.CrossRefGoogle Scholar
  60. 60.
    Rodríguez-González, N., González-Castro, M.-J., Beceiro-González, E., and Muniategui-Lorenzo, S., Microchem. J., 2017, vol. 133, p. 137.CrossRefGoogle Scholar
  61. 61.
    Trinanes, S., Casais, M.C., Mejuto, M.C., and Cela, R., J. Chromarogr. A, 2016, vol. 1462, p. 35.CrossRefGoogle Scholar
  62. 62.
    Li, M., Sun, Q., Li, Y., Lv, M., Lin, L., Wu, Y., Ashfag, M., and Yu, C.-P., Anal. Bioanal. Chem., 2016, vol. 408, no. 18, p. 4953.CrossRefGoogle Scholar
  63. 63.
    Vosough, M., Onilghi, M.N., and Salemi, A., Anal. Methods, 2016, vol. 8, no. 24, p. 4853.CrossRefGoogle Scholar
  64. 64.
    Moein, M.M., Abdel-Rehim, A., and Abdel-Rehim, M., TrAC, Trends Anal. Chem., 2015, vol. 67, p. 34.CrossRefGoogle Scholar
  65. 65.
    Halinski, L.P. and Stepnowski, P., Acta Chromatogr., 2015, vol. 27, no. 4, p. 729.CrossRefGoogle Scholar
  66. 66.
    Wierucka, M. and Biziuk, M., TrAC, Trends Anal. Chem., 2014, vol. 59, p. 50.CrossRefGoogle Scholar
  67. 67.
    Dzhenloda, R.K., Petrov, D.G., Shkinev, V.M., and Spivakov, B.Y., Mendeleev Commun., 2017, vol. 27, no. 3, p. 302.CrossRefGoogle Scholar
  68. 68.
    Sajid, M., Anal. Chim. Acta, 2017, vol. 965, p. 36.CrossRefGoogle Scholar
  69. 69.
    Li, P., Hu, B., and Li, X., J. Chromatogr. A, 2012, vol. 1247, p. 49.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. S. Fedotov
    • 1
    Email author
  • G. I. Malofeeva
    • 1
  • E. Yu. Savonina
    • 1
  • B. Ya. Spivakov
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations