Journal of Analytical Chemistry

, Volume 74, Issue 3, pp 276–285 | Cite as

Electrochemical Sensors for Heavy Metals Detection in Gracilaria corticata using Multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode

  • Anjuran Vimala
  • Chinnapiyan VedhiEmail author


Electrochemical methods for heavy metals detection have attracted considerable attention due to their simplicity, rapidity and high sensitivity. Voltammetric methods are a valid and very effective alternative for the simultaneous determination of heavy metals. An independent atomic absorption spectroscopic analysis of the seaweed sample was carried out and the results were compared with the World Health Organization permissible limits. The sample was clearly observed in the atomic force microscopic images, characterized by Fourier transform infrared spectroscopy and X-ray diffraction analysis. The electrochemical behavior of heavy metals on a bare glassy carbon electrode and a multiwalled carbon nanotubes modified glassy carbon electrode was studied by cyclic voltammetry, linear sweep anodic voltammetry, square wave anodic voltammetry and differential pulse anodic voltammetry. Very good responses were observed for all the metals when the modified electrode was employed.


Fourier transform infrared spectroscopy atomic absorption spectroscopy atomic force microscopy differential pulse anodic voltammetry multiwalled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE) 



The authors are extremely grateful to Department of Science and Technology (FAST TRACK and FIST) New Delhi, INDIA for using CHI Electrochemical workstation and UGC New Delhi, INDIA for using FTIR spectrometer and AFM at V.O.C. College, Tuticorin-8.


  1. 1.
    Darwish, I.A. and Blake, D.A., Anal. Chem., 2002, vol. 74, p. 52.CrossRefGoogle Scholar
  2. 2.
    Wȩgrzynek, D. and Hołyńska, B., Appl. Radiat. Isot., 1993, vol. 44, p. 1101.CrossRefGoogle Scholar
  3. 3.
    Barbosa, F., Krug, F.J., and Lima, E.C., Spectrochim. Acta, Part B, 1999, vol. 54, p. 1155.CrossRefGoogle Scholar
  4. 4.
    Pereira Ferreira, H.B., Fernandes de Lima, T.A., and Barbeira, P.J.S., Electroanalysis, 2007, vol. 20, p. 390.CrossRefGoogle Scholar
  5. 5.
    Shams, E., Babaei, A., and Soltaninezhad, M., Anal. Chim. Acta, 2004, vol. 501, p. 119.CrossRefGoogle Scholar
  6. 6.
    Wang, J., Lu, J., Hocevar, S.B., and Farias, P.A.M., Anal. Chem., 2000, vol. 72, p. 3218.CrossRefGoogle Scholar
  7. 7.
    Zhang, X.H. and Wang, S.F., Sens. Actuators, B, 2005, vol. 104, p. 29.CrossRefGoogle Scholar
  8. 8.
    Hu, C., Wu, K., Dai, X., and Hu, S., Talanta, 2003, vol. 60, p. 17.CrossRefGoogle Scholar
  9. 9.
    Yuan, S., Chen, W.H., and Hu, S.S., Talanta, 2004, vol. 64, p. 922.CrossRefGoogle Scholar
  10. 10.
    Mouchrek, V.E., Chierice, G.O., and Marques A.L.B., Quim. Nova, 1999, vol. 22, p. 312.CrossRefGoogle Scholar
  11. 11.
    Murray, R.W., in Chemically Modified Electrodes in Electroanalytical Chemistry, Bard, A.J., Ed., New York: Marcel Dekker, 1984, p. 191.Google Scholar
  12. 12.
    Abruña, H.D., Coord. Chem. Rev., 1988, vol. 86, p. 135.CrossRefGoogle Scholar
  13. 13.
    Murray, R.W., Acc. Chem. Res., 1980, vol. 13, p. 135.CrossRefGoogle Scholar
  14. 14.
    Kutner, W., Wang, J., L’her, M., and Buck, R.P., Pure Appl. Chem., 1998, vol. 70, p. 1301.CrossRefGoogle Scholar
  15. 15.
    Arrigan, D.W.M., Analyst, 1994, vol. 119, p. 1953.CrossRefGoogle Scholar
  16. 16.
    Kalcher, K., Electroanalysis, 1990, vol. 2, p. 419.CrossRefGoogle Scholar
  17. 17.
    Kalcher, K., Kauffmann, J.M., Wang, J., Svancara, I., Vytras, K., Neuhold, C., and Yang, Z., Electroanalysis, 1995, vol. 7, p. 5.CrossRefGoogle Scholar
  18. 18.
    Cha, S.K. and Abruña, H.D., Anal. Chem., 1990, vol. 62, p. 274.CrossRefGoogle Scholar
  19. 19.
    Labuda, J. and Plaskoni, V., Anal. Chim. Acta, 1990, vol. 228, p. 259.CrossRefGoogle Scholar
  20. 20.
    Ye, J.S., Wen, Y., De Zhang, W., Gan, L.M., Xu, G.Q., and Sheu, F.S., Electrochem. Commun., 2004, vol. 6, p. 66.CrossRefGoogle Scholar
  21. 21.
    Guascito, M.R., Chirizzi, D., Picca, R.A., Mazzotta, E., and Malitesta, C., Mater. Sci. Eng., 2011, vol. 31, p. 606.CrossRefGoogle Scholar
  22. 22.
    Park, H.S. and Gong, M.S., Bull. Korean Chem. Soc., 2012, vol. 33, p. 483.CrossRefGoogle Scholar
  23. 23.
    Perrin, D.D., Buffers for pH and Metal Ion Control, Canberra: Australian Natl. Univ., 1974.Google Scholar
  24. 24.
    Venkatesan, S., Pugazhendy, K., Sangeetha, D., Vasantharaja, C., Prabakaran, S., and Meenambal, M., Int. J. Pharm. Biol. Arch., 2012, vol. 3, p. 969.Google Scholar
  25. 25.
    Dovbeshko, G.I., Gridina, N.Y., Kruglova, E.B., and Pashchuk, O.P., Talanta, 1997, vol. 53, p. 233.CrossRefGoogle Scholar
  26. 26.
    Sar, P., Kazy, S.K., Asthana, R.K., and Singh, S.P., Int. Biodeterior. Biodegrad., 1999, vol. 44, p. 101.CrossRefGoogle Scholar
  27. 27.
    Norton, L., Baskaran, K., and McKenzie, T., Adv. Environ. Res., 2004, vol. 8, p. 629.CrossRefGoogle Scholar
  28. 28.
    Lodeiro, P., Barriada, J.L., Herrero, R., and Sastre de Vicente, M.E., Environ. Pollut., 2006, vol. 142, p. 264.CrossRefGoogle Scholar
  29. 29.
    Tunali, S., Cabuk, A., and Akar, T., Chem. Eng. J., 2006, vol. 115, p. 203.CrossRefGoogle Scholar
  30. 30.
    Gabr, R.M., Hassan, S.H.A., and Shoreit, A.A.M., Int. Biodeterior. Biodegrad., 2008, vol. 62, p. 195.CrossRefGoogle Scholar
  31. 31.
    Giotta, L., Mastrogiacomo, D., Italiano, F., Milano, F., Agostiano, A., Nagy, K., Valli, L., and Trotta, M., Langmuir, 2011, vol. 27, p. 3762.CrossRefGoogle Scholar
  32. 32.
    Pejman, A.H., Nabi Bidhendi, G.R., Ardestani, M., Saeedi, M., Baghvand, A., and Moradi, Sh., Int. J. Environ. Res., 2014, vol. 8, p. 1067.Google Scholar
  33. 33.
    Theivasanthi, T. and Alagar, M., Nano Biomed. Eng., 2013, vol. 5, p. 10.Google Scholar
  34. 34.
    Rusu, D.I., Rusu, G.G., and Luca, D., Acta Phys. Pol., A, 2011, vol. 119, p. 850.CrossRefGoogle Scholar
  35. 35.
    Yokesh Babu, M., Janaki Devi, V., Ramakriti-nan, C.M., Umarani, R., Nagarani, N., and Kumaraguru, A.K., Int. J. Curr. Microbiol. Appl. Sci., 2013, vol. 2, p. 155.Google Scholar
  36. 36.
    Suresh Jeyakumar, R.P. and Chandrasekaran, V., Int. Global Res. Anal., 2013, vol. 2, p. 10.Google Scholar
  37. 37.
    Maksumov, A., Vidu, R., Palazoglu, A., and Stroeve, P., J. Colloid Interface Sci., 2004, vol. 272, p. 365.CrossRefGoogle Scholar
  38. 38.
    Penghui Zhang, Sheying Dong, Guangzhe Gu, and Tinglin Huang, Bull. Korean Chem. Soc., 2010, vol. 31, p. 2949.CrossRefGoogle Scholar
  39. 39.
    Marichamy, B. and Ramalakshmi, N., Int. J. Chem. Stud., 2013, vol. 1, p. 142.Google Scholar
  40. 40.
    Rajkumar Muniyandi, Thiagarajan Soundappan, and Chen Shen-Ming, Int. J. Electrochem. Sci., 2011, vol. 6, p. 3164.Google Scholar
  41. 41.
    Calvo-Pérez, A., Domínguez-Renedo, O., Asunción Alonso-Lomillo, M., and Arcos-Martínez, M.J., Electroanalysis, 2010, vol. 22, p. 2924.CrossRefGoogle Scholar
  42. 42.
    Sadikoglu, M., Taskin G., Gül Demirtas, F., Selvi, B., and Barut, M., Int. J. Electrochem. Sci., 2012, vol. 7, p. 11550.Google Scholar
  43. 43.
    Bott, A.W. and Jackson, B.P., Curr. Sep., 1996, vol. 15, p. 25.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, V.O Chidambaram CollegeTuticorinIndia

Personalised recommendations