Journal of Analytical Chemistry

, Volume 74, Issue 2, pp 198–204 | Cite as

Analytical Response of Sensor Arrays Based on Photonic Crystals: Measurements of Diffuse Reflectance

  • A. V. IvanovEmail author
  • E. S. Bol’shakov
  • V. V. Apyari
  • A. A. Kozlov
  • M. V. Gorbunova
  • S. D. Abdullaev


Organic sensor arrays based on photonic crystals of submicrometer polystyrene particles, coated by a layer of polydimethylsiloxane, were studied using diffuse reflectance spectroscopy. The spectral characteristics obtained on instruments with different measurement geometries are compared. The conditions for obtaining the most informative analytical signal of sensor arrays based on photonic crystals are selected. Under the proposed conditions, the kinetic differences in the operation of these arrays upon exposure to nonpolar organic solvents (toluene and o-xylene) are compared. The work was performed at the Division of Analytical Chemistry, Department of Chemistry, Moscow State University.


photonic crystals diffuse reflectance spectroscopy polymer sensor arrays analytical signal 



The study was supported by the Russian Foundation for Basic Research, project no. 18-03-00397.


  1. 1.
    Problemy analiticheskoi khimii (Problems of Analytical Chemistry), vol. 20: Nanoob”ekty i nanotekhnologii v khimicheskom analize (Nano-Objects and Nanotechnologies in Chemical Analysis), Shtykov, S.N., Ed., Moscow: Nauka, 2015.Google Scholar
  2. 2.
    Dmitrienko, S.G., Shpigun, O.A., Apyari, V.V., and Anan’eva, I.A., in Khimicheskii analiz: na puti k sovershenstvu. Kafedra analiticheskoi khimii Moskovskogo universiteta (Chemical Analysis: Towards Perfection. Division of Analytical Chemistry, Moscow University) Zolotov, Yu.A., Ed., Moscow: LENAND, 2015, p. 301.Google Scholar
  3. 3.
    Apyari, V.V., Ioutsi, A.N., Arkhipova, V.V., Dmitrienko, S.G., and Shapovalova, E.N., Adv. Nat. Sci.: Nanosci. Nanotechnol., 2015, vol. 6, no. 2, 025002.Google Scholar
  4. 4.
    Cai, Zh., Smith, N.L., Zhang, J.T., and Asher, S.A., Anal. Chem., 2015, vol. 87, p. 5013.CrossRefGoogle Scholar
  5. 5.
    Coukouma, A.E., Smith, N.L., and Asher, S.A., Analyst, 2015, vol. 140, p. 6517.CrossRefGoogle Scholar
  6. 6.
    Fenzl, Ch., Kirchenger, M., Hirsch, T., and Wolfbeis, O.S., Chemosensors, 2014, vol. 2, p. 207.CrossRefGoogle Scholar
  7. 7.
    Cui, Q., Wang, W., Gu, B., and Liang, L., Macromolecules, 2012, vol. 45, p. 8392.Google Scholar
  8. 8.
    Lu, W., Asher, S.A., Meng, Z., Yan, Z., Xue, M., Qui, L., and Yi, D., J. Hazard. Mater., 2016, vol. 316, p. 87.CrossRefGoogle Scholar
  9. 9.
    Eliseev, A.A. and Lukashin, A.V., Funktsional’nye nanomaterialy (Functional Nanomaterials), Tret’yakov, Yu.D., Ed., Moscow: Fizmatlit, 2010.Google Scholar
  10. 10.
    Joannopoulos, J.D., Johnson, S.G., Winn, J.N., and Meade, R.D., Photonic Crystals: Molding the Flow of Light, Princeton: Princeton Univ. Press, 2008.Google Scholar
  11. 11.
    Kuznetsov, N.T., Novotortsev, V.M., Zhabrev, V.A., and Margolin, V.I., Osnovy nanotekhnologii (Fundamentals of Nanotechnology), Moscow: BINOM. Laboratoriya znanii, 2014.Google Scholar
  12. 12.
    Kozlov, A.A., Abdullaev, S.D., Gritskova, I.A., Ivanov, A.V., Flid, V.R., and Koreshkova, A.N., Tonkie Khim. Tekhnol., 2015, vol. 10, no. 6, p. 58.Google Scholar
  13. 13.
    Ivanov, A.V., Kozlov, A.A., Koreshkova, A.N., Abdullaev, S.D., and Fedorova, I.A., Moscow Univ. Chem. Bull. (Engl. Transl.), 2017, vol. 72, no. 1, p. 19.Google Scholar
  14. 14.
    Bolshakov, E.S., Ivanov, A.V., Kozlov, A.A., and Abdullaev, S.D., Russ. J. Phys. Chem. A, 2018, vol. 92, no. 8, p. 1530.CrossRefGoogle Scholar
  15. 15.
    Kortüm, G., Braun, W., and Herzog, G., Angew. Chem., 1963, vol. 75, no. 14, p. 653.CrossRefGoogle Scholar
  16. 16.
    Kuznetsova, O.V., Ivanov, V.M., and Kazennov, N.V., Vestn. Mosk. Univ., Ser. 2: Khim., 1997, vol. 38, no. 1, p. 53.Google Scholar
  17. 17.
    Dmitrienko, S.G., Pyatkova, L.N., Sviridova, O.A., and Apyari, V.V., Partnery Konkurenty, 2004, no. 2, p. 23.Google Scholar
  18. 18.
    Tikhomirova, T.I. and Ivanov, A.V., Mendeleev Commun., 2016, vol. 26, no. 2, p. 259.CrossRefGoogle Scholar
  19. 19.
    Apyari, V.V. and Dmitrienko, S.G., J. Anal. Chem., 2008, vol. 63, no. 6, p. 530.CrossRefGoogle Scholar
  20. 20.
    Apyari, V.V., Dmitrienko, S.G., Batov, I.V., and Zolotov, Yu.A., J. Anal. Chem., 2011, vol. 66, no. 2, p. 144.CrossRefGoogle Scholar
  21. 21.
    Kozlov, A.A., Abdullaev, S.D., Flid, V.R., and Gusev, S.A., Russ. J. Phys. Chem. A, 2016, vol. 90, no. 9, p. 1835.CrossRefGoogle Scholar
  22. 22.
    Abdullaev, S.D., Kozlov, A.A., Aksenov, A.S., and Ivanov, A.V., Tr. Kol’skogo Nauchn. Tsentra Ross. Akad. Nauk. Khim. Materialoved., 2018, vol. 9, no. 1, part 2, p. 485.Google Scholar
  23. 23.
    Ivanov, A.V., Bolshakov, E.S., Kozlov, A.A., and Abdullaev, S.D., in Proc. 8th Int. IUPAC Symp. “Macro- and Supramolecular Architectures and Materials: Multifunctional Materials and Structures” (MAM-17), Sochi, 2017, p. 193.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Ivanov
    • 1
    • 2
    Email author
  • E. S. Bol’shakov
    • 1
  • V. V. Apyari
    • 1
  • A. A. Kozlov
    • 3
  • M. V. Gorbunova
    • 1
  • S. D. Abdullaev
    • 3
  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Fine Chemical Technologies, Russian Technological UniversityMoscowRussia

Personalised recommendations