Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 2, pp 143–152 | Cite as

Reducing and Oxidizing Columns in the Flow Injection Determination of Nitrazepam in Pharmaceutical Formulations

  • Hind HadiEmail author
  • Marwa Mouayed
  • Ayman A. Gouda
ARTICLES
  • 3 Downloads

Abstract

Two flow injection analysis (FIA) systems for determining nitrazepam (NZP) in pharmaceutical formulations using two kinds of solid-phase reactors were developed. The first system involved on-line oxidation of the reagent using a mini column containing PbO2 immobilized on cellulose acetate, while the second one involved on-line reduction of drug using a mini-Jones reductor. Both methods are based on spectrophotometric method involving oxidative coupling reaction to phenothiazine with reduced NZP in the presence of a suitable oxidizing agent to form a green color product measured at 615 or 589 nm for the two methods, respectively. The calibration graphs were linear over the range 0.5 to 45 and 10 to 250 μg/mL with a relative standard deviation less than 3.6% (n = 32) and 2.4% (n = 35) for the two methods. Solid-phase reactors can be applied for the determination of NZP in a FIA with high sensitivity and significant advantages over conventional procedures.

Keywords:

solid phase reactors nitrazepam reverse flow injection 

REFERENCES

  1. 1.
    Higgitt, A.C., Lader, M.H., and Fonagy, P, Br. Med. J. (Clin. Res. Ed.), 1985, vol. 291, no. 6497, p. 688.CrossRefGoogle Scholar
  2. 2.
    Han, S., Xia, L., and Wei, B., Anal. Sci., 2014, vol. 30, p. 495.CrossRefGoogle Scholar
  3. 3.
    Molaei, K., Asgharinezhed, A.A., Ebrahimzadeh, H., Shekar, N., Jalilian, N., and Dehghani, Z., J. Sep. Sci., 2015, vol. 38, no. 22, p. 3905.CrossRefGoogle Scholar
  4. 4.
    Thangadurai, S., Kanagaraj, B., and Kulantheswaran, M., Malays. J. Forensic Sci., 2015, vol. 6, no. 1, p. 12.Google Scholar
  5. 5.
    Lee, H.H., Lee, J.F., Lin, S.Y., Lin, Y.Y., and Chen, B.H., Clin. Chim. Acta, 2013, vol. 420, p. 134.CrossRefGoogle Scholar
  6. 6.
    Baciu, T., Botello, I., Borrul, F., Calull, M., and Aguilar, C., TrAC, Trends Anal. Chem., 2015, vol. 74, p. 89.CrossRefGoogle Scholar
  7. 7.
    de Bairrose, A.V., de Almeida, R.M., Pantaleão, L., Barcellos, T., and Yonamine, M., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2015, vol. 975, p. 24.Google Scholar
  8. 8.
    Abdulsattar, R.S., J. Univ. Anbar Pure Sci., 2010, vol. 4, no. 1, p. 1.Google Scholar
  9. 9.
    Al-Shaker, Y.M. and Hassan, I.Y., Rafidain J. Sci., 2011, vol. 22, no. 4, p. 39.Google Scholar
  10. 10.
    Revanasiddappa, H.D., Deepakumari, H.N., and Vinay, K.B., An. Univ. Bucuresti, Chim., 2011, vol. 20, no. 2, p. 189.Google Scholar
  11. 11.
    Revanasiddappa, H.D., Mallegowda, S.M., Deepakumari, N.H., and Vinay, B.K., Asian J. Biochem. Pharm. Res., 2011, vol. 1, p. 70.Google Scholar
  12. 12.
    Upadhyay, K., Recent Res. Sci. Technol., 2012, vol. 4, no. 8, p. 89.Google Scholar
  13. 13.
    Deepakumari, H.N. and Revanasiddappa, H.D., J. Spectrosc., 2013, vol. 2013, p. 1.CrossRefGoogle Scholar
  14. 14.
    Martínez, J. and García-Mateo, J.V., TrAC, Trends Anal. Chem., 1993, vol. 12, p. 428.CrossRefGoogle Scholar
  15. 15.
    Tzanavaras, P.D. and Themelis, D.G., Anal. Chim. Acta, 2007, vol. 588, p. 1.CrossRefGoogle Scholar
  16. 16.
    Zhang, Z. and Tang, Y., Anal. Bioanal. Chem., 2005, vol. 381, p. 932.CrossRefGoogle Scholar
  17. 17.
    Faizullah, A.T. and Townshend, A., Anal. Chim. Acta, 1985, vol. 167, p. 225.CrossRefGoogle Scholar
  18. 18.
    The Indian Pharmacopoeia, Ghaziabad: The Indian Pharmacopoeia Commission, 2007, vol. 3, p. 834.Google Scholar
  19. 19.
    Hargis, L.G., Analytical Chemistry: Principles and Techniques, Englewood Cliffs, NJ: Prentice-Hall, 1998.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, College of Science, University of BaghdadBaghdadIraq
  2. 2.Chemistry Department, Faculty of Sciences, Zagazig UniversityZagazigEgypt

Personalised recommendations