Journal of Analytical Chemistry

, Volume 74, Issue 2, pp 153–171 | Cite as

Reagentless Impedimetric Sensors Based on Aminophenylboronic Acids

  • E. A. AndreevEmail author
  • M. A. Komkova
  • V. N. Nikitina
  • A. A. Karyakin


The review is dedicated to polymers of 2- and 3-aminophenylboronic acid. In contrast to the majority of other conducto- and impedimetric sensors, the ones developed by the authors can discriminate between specific and unspecific processes: conductivity as an analytical signal of the sensor is increasing upon specific binding being opposite to the result of an unspecific process. The increase of conductivity as a result of a specific process is demonstrated for the first time by our group, and the effect was confirmed by physicochemical investigations. The developed sensors are applicable to aerosol analysis as well as to aqueous media. Human whole sweat analysis performed by the sensors succeeded to determine the concentration of lactate (which is recognized as a hypoxia marker and the second important metabolite after in clinical diagnostics) in the range of 10−40 mM. The developed sensors are also applicable to reagentless mold detection in bioaerosols in the concentrations in the range 200−800 CFU/m3 that includes Russian hygienic standard for locality (500 CFU/m3).


impedimetric sensors human sweat analysis microorganisms phenylboronic acid molecular imprints conductive polymers 



This work was supported by the Russian Science Foundation, project no. 18-73-00264.


  1. 1.
    Wu, X., Li, Z., Chen, X.-X., Fossey, J.S., James, T.D., and Jiang, Y.-B., Chem. Soc. Rev., 2013, vol. 42, no. 20, p. 8032.CrossRefGoogle Scholar
  2. 2.
    Kim, J.-K., Jackson, S.N., and Murray, K.K., Rapid Commun. Mass Spectrom., 2005, vol. 19, no. 12, p. 1725.CrossRefGoogle Scholar
  3. 3.
    Liu, H., Li, Y., Sun, K., Fan, J., Zhang, P., Meng, J., Wang, S., and Jiang, L., J. Am. Chem. Soc., 2013, vol. 135, no. 20, p. 7603.CrossRefGoogle Scholar
  4. 4.
    Wannapob, R., Kanatharana, P., Limbut, W., Numnuam, A., Asawatreratanakul, P., Thammakhet, C., and Thavarungkul, P., Biosens. Bioelectron., 2010, vol. 26, no. 2, p. 357.CrossRefGoogle Scholar
  5. 5.
    Nicolas, M., Fabre, B., Marchand, G., and Simonet, J., Eur. J. Org. Chem., 2000, vol. 2000, no. 9, p. 1703.CrossRefGoogle Scholar
  6. 6.
    Shoji, E. and Freund, M.S., J. Am. Chem. Soc., 2001, vol. 123, no. 14, p. 3383.CrossRefGoogle Scholar
  7. 7.
    Shoji, E. and Freund, M.S., J. Am. Chem. Soc., 2002, vol. 124, no. 42, p. 12486.CrossRefGoogle Scholar
  8. 8.
    Liu, S., Miller, B., and Chen, A., Electrochem. Commun., 2005, vol. 7, no. 12, p. 1232.CrossRefGoogle Scholar
  9. 9.
    Morita, K., Hirayama, N., Imura, H., Yamaguchi, A., and Teramae, N., J. Electroanal. Chem., 2011, vol. 656, no. 12, p. 192.CrossRefGoogle Scholar
  10. 10.
    Wang, H.-C., Zhou, H., Chen, B., Mendes, P.M., Fossey, J.S., James, T.D., and Long, Y.-T., Analyst, 2013, vol. 138, no. 23, p. 7146.CrossRefGoogle Scholar
  11. 11.
    Ma, Y. and Yang, X., J. Electroanal. Chem., 2005, vol. 580, no. 2, p. 348.CrossRefGoogle Scholar
  12. 12.
    Ali, S.R., Ma, Y., Parajuli, R.R., Balogun, Y., Lai, W.Y.C., and He, H., Anal. Chem., 2007, vol. 79, no. 6, p. 2583.CrossRefGoogle Scholar
  13. 13.
    Plesu, N., Kellenberger, A., Taranu, I., Taranu, B.O., and Popa, I., React. Funct. Polym., 2013, vol. 73, no. 5, p. 772.CrossRefGoogle Scholar
  14. 14.
    Badhulika, S., Tlili, C., and Mulchandani, A., Analyst, 2014, vol. 139, no. 12, p. 3077.CrossRefGoogle Scholar
  15. 15.
    Lomakina, G.Y. and Ugarova, N.N., Luminescence, 2010, vol. 25, no. 2, p. 192.Google Scholar
  16. 16.
    Batey, R.A., Carboni, B., Carreaux, F., Chan, D.M.T., Cho, B.T., Gao, X., Hayashi, T., Ishihara, K., Ishiyama, T., James, T., Kennedy, J.W.J., Lam, P.Y.S., Matteson, D., Miyaura, N., Suzuki, A., Wang, B., Yang, W., and Yoshida, K., Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine, Weinheim: Wiley, 2005.Google Scholar
  17. 17.
    Yang, X., Cheng, Y., Jin, S., and Wang, B., in Boronic Acid-Based Receptors and Chemosensors. Artificial Receptors for Chemical Sensors, Mirsky, V.M. and Yatsimirsky, A.K., Eds., Weinheim: Wiley, 2010, p. 169.Google Scholar
  18. 18.
    Bencini, A. and Lippolis, V., Coord. Chem. Rev., 2012, vol. 256, nos. 1–2, p. 149.CrossRefGoogle Scholar
  19. 19.
    Schneider, H.-J. and Yatsimirsky, A., Principles and Methods in Supramolecular Chemistry, Weinheim: Wiley, 1999.Google Scholar
  20. 20.
    Martínez-Aguirre, M.A., Villamil-Ramos, R., Guerrero-Alvarez, J.A., and Yatsimirsky, A.K., Org. Chem., 2013, vol. 78, no. 10, p. 4674.CrossRefGoogle Scholar
  21. 21.
    Bosch, L.I., Fyles, T.M., and James, T.D., Tetrahedron, 2004, vol. 60, no. 49, p. 11175.CrossRefGoogle Scholar
  22. 22.
    Springsteen, G. and Wang, B.H., Tetrahedron, 2002, vol. 58, no. 26, p. 5291.CrossRefGoogle Scholar
  23. 23.
    Tatara, Y., Kakizaki, I., Suto, S., Ishioka, H., Negishi, M., and Endo, M., Glycobiology, 2014, vol. 25, no. 5, p. 557.CrossRefGoogle Scholar
  24. 24.
    Zayats, M., Katz, E., and Willner, I., J. Am. Chem. Soc., 2002, vol. 124, no. 49, p. 14724.CrossRefGoogle Scholar
  25. 25.
    Berionni, G., Morozova, V., Heininger, M., Mayer, P., Knochel, P., and Mayr, H., J. Am. Chem. Soc., 2013, vol. 135, no. 16, p. 6317.CrossRefGoogle Scholar
  26. 26.
    Andreyev, E.A., Komkova, M.A., Nikitina, V.N., Zaryanov, N.V., Voronin, O.G., Karyakina, E.E., Yat-simirsky, A.K., and Karyakin, A.A., Anal. Chem., 2014, vol. 86, no. 23, p. 11690.CrossRefGoogle Scholar
  27. 27.
    Yuchi, A., Sakurai, J.K., Tatebe, A., Hattori, H., and Wada, H., Anal. Chim. Acta, 1999, vol. 387, no. 2, p. 189.CrossRefGoogle Scholar
  28. 28.
    Heinze, J., Rasche, A., Pagels, M., and Geschke, B., J. Phys. Chem. B, 2007, vol. 111, no. 5, p. 989.CrossRefGoogle Scholar
  29. 29.
    Nikitina, V.N., Kochetkov, I.R., Karyakina, E.E., Y-atsimirsky, A.K., and Karyakin, A.A., Electrochem. Commun., 2015, vol. 51, p. 121.CrossRefGoogle Scholar
  30. 30.
    Inzelt, G. and Lang, G.G., in Electrochemical Impedance Spectroscopy (EIS) for Polymer Characterization. Electropolymerization: Concepts, Materials and Applications, Cosnier, S. and Karyakin, A.A., Eds., Weinheim: Wiley, 2010, p. 51.Google Scholar
  31. 31.
    Park, J.-Y., Chang, B.-Y., Nam, H., and Park, S.-M., Anal. Chem., 2008, vol. 80, no. 21, p. 8035.CrossRefGoogle Scholar
  32. 32.
    Epstein, A.J., Faraday Discuss., 1989, vol. 88, p. 317.CrossRefGoogle Scholar
  33. 33.
    Deore, B. and Freund, M.S., Analyst, 2003, vol. 128, no. 6, p. 803.CrossRefGoogle Scholar
  34. 34.
    Nikitina, V.N., Zaryanov, N.V., Kochetkov, I.R., Karyakina, E.E., Yatsimirsky, A.K., and Karya-kin, A.A., Sens. Actuators, B, 2017, vol. 246, p. 428.CrossRefGoogle Scholar
  35. 35.
    Karyakin, A.A., Nikulina, S.V., Vokhmyanina, D.V., Karyakina, E.E., Anaev, E.K.H., and Chucha-lin, A.G., Electrochem. Commun., 2017, vol. 83, p. 81.CrossRefGoogle Scholar
  36. 36.
    Zaryanov, N.V., Nikitina, V.N., Karpova, E.V., Karyakina, E.E., and Karyakin, A.A., Anal. Chem., 2017, vol. 89, no. 21, p. 11198.CrossRefGoogle Scholar
  37. 37.
    Komkova, M.A., Andreyev, E.A., Nikitina, V.N., Krupenin, V.A., Presnov, D.E., Karyakina, E.E., Yatsimirsky, A.K., and Karyakin, A.A., Electroanalysis, 2015, vol. 27, no. 9, p. 2055.CrossRefGoogle Scholar
  38. 38.
    Liu, D., Perdue, R.K., Sun, L., and Crooks, R.M., Langmuir, 2004, vol. 20, no. 14, p. 5905.CrossRefGoogle Scholar
  39. 39.
    Dacarro, C., Picco, A.M., Grisoli, P., and Rodolfi, M., J. Appl. Microbiol., 2003, vol. 95, no. 5, p. 904.CrossRefGoogle Scholar
  40. 40.
    Newson, R., Strachan, D., Corden, J., and Millington, W., J. Occup. Environ. Med., 2000, vol. 57, no. 11, p. 786.CrossRefGoogle Scholar
  41. 41.
    Ren, P., Jankun, T.M., Belanger, K., Bracken, M.B., and Leaderer, B.P., Allergy, 2001, vol. 56, no. 5, p. 419.CrossRefGoogle Scholar
  42. 42.
    Beguin, H. and Nolard, N., Aerobiologia, 1994, vol. 10, no. 2, p. 157.CrossRefGoogle Scholar
  43. 43.
    Żukiewicz-Sobczak, W.A., Adv. Dermatol. Allergol., 2013, vol. 30, no. 1, p. 42.CrossRefGoogle Scholar
  44. 44.
    Chi, M.-C. and Li, C.-S., Aerosol Sci. Technol., 2005, vol. 39, no. 11, p. 1101.CrossRefGoogle Scholar
  45. 45.
    Gilbert, Y., Veillette, M., and Duchaine, C., Aerobiologia, 2010, vol. 26, no. 3, p. 185.CrossRefGoogle Scholar
  46. 46.
    Schulze, H., Rubtsova, M., and Bachmann, T.T., in DNA Microarrays for Pathogen Detection: Modern Techniques for Pathogen Detection, Popp, J. and Bauer, M., Eds., Weinheim: Wiley, 2015, p. 113.CrossRefGoogle Scholar
  47. 47.
    Lee, S.J., Park, J.S., Im, H.T., and Jung, H.-I., Sens. Actuators, B, 2008, vol. 132, no. 2, p. 443.CrossRefGoogle Scholar
  48. 48.
    Hernlem, B.J. and Ravva, S.V., J. Environ. Monitor., 2007, vol. 9, no. 12, p. 1317.CrossRefGoogle Scholar
  49. 49.
    Rizza, V. and Kornfeld, J.M., Microbiology, 1969, vol. 58, no. 3, p. 307.Google Scholar
  50. 50.
    Hamilton, P.B. and Knight, S.G., Arch. Biochem. Biophys., 1962, vol. 99, no. 2, p. 282.CrossRefGoogle Scholar
  51. 51.
    Ramírez, C. and Martinez, A.T., Manual and Atlas of the Penicillia, Amsterdam: Elsevier Biomedical, 1982.Google Scholar
  52. 52.
    Andreev, E.A., Komkova, M.A., Shavokshina, V.A., Presnov, D.E., Krupenin, V.A., and Karyakin, A.A., Electroanalysis, 2018, vol. 30, no. 4, p. 602.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. A. Andreev
    • 1
    Email author
  • M. A. Komkova
    • 1
    • 2
  • V. N. Nikitina
    • 1
  • A. A. Karyakin
    • 1
  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Department of Material Sciences, Moscow State UniversityMoscowRussia

Personalised recommendations