Advertisement

Journal of Analytical Chemistry

, Volume 73, Issue 14, pp 1357–1363 | Cite as

Selection of Recording Conditions and Study of Fragmentation of a Peptide Biomarker of Sarin by High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry

  • A. N. StavrianidiEmail author
  • A. V. Braun
  • E. A. Stekolshchikova
  • T. M. Baygildiev
  • I. A. Rodin
  • I. V. Rybalchenko
ARTICLES
  • 13 Downloads

Abstract

The identification of protein biomarkers of chemical warfare agents involves their reliable detection in the blood plasma at trace levels. This is a challenging task in the modern liquid chromatography–mass spectrometry. Existing approaches are based on the formation of tyrosine adducts with alkylmethylphosphonic acids after the cleavage of all proteins. The structure of such adducts is related to the type of the chemical agent used. This study demonstrates the possibility of detecting the tripeptide adduct of isopropylmethylphosphonic acid, obtained by trypsinolysis of the albumin adduct with sarin, in human plasma. The study of the pathways of fragmentation of the analyte ensures the identification of the characteristic features of dissociation that can be used to determine other biomarkers of the application of chemical weapons. The conditions for recording the most intense ion transitions to perform the rapid screening of blood plasma samples for the concentration of the albumin adduct of sarin by filtration with trypsinolysis are proposed.

Keywords:

protein adducts sarin trypsinolysis tandem mass spectrometry 

Notes

ACKNOWLEDGMENTS

The study was supported by the Russian Science Foundation, project no. 15-13-10005, granted to the Kostroma State University.

REFERENCES

  1. 1.
    Babu, U.M., Condon, P., Mendez, A., and Sambursky, R., Chem. Biol. Interact., 2013, vol. 203, no. 1, p. 108.CrossRefGoogle Scholar
  2. 2.
    Black, R.M., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2010, vol. 878, nos. 17–18, p. 1207.CrossRefGoogle Scholar
  3. 3.
    Black, R.M. and Read, R.W., Arch. Toxicol., 2013, vol. 87, no. 3, p. 421.CrossRefGoogle Scholar
  4. 4.
    Black, R.M., J. Anal. Toxicol., 2008, vol. 32, no. 1, p. 2.CrossRefGoogle Scholar
  5. 5.
    Shih, M.L., McMonagle, J.D., Dolzine, T.W., and Gresham, V.C., J. Appl. Toxicol., 1994, vol. 14, no. 3, p. 195.CrossRefGoogle Scholar
  6. 6.
    Adams, T.K., Capacio, B.R., Smith, J.R., Whalley, C.E., and Korte, W.D., Drug Chem. Toxicol., 2005, vol. 27, no. 1, p. 77.CrossRefGoogle Scholar
  7. 7.
    Pantazides, B.G., Watson, C.M., Carter, M.D., Crow, B.S., Perez, J.W., Blake, T.A., Thomas J.D., and Johnson, R.C., Anal. Bioanal. Chem., 2014, vol. 406, no. 21, p. 5187.CrossRefGoogle Scholar
  8. 8.
    Sporty, J.L., Lemire, S.W., Jakubowski, E.M., Ren-ner, J.A., Evans, R.A., Williams, R.F., Schmidt, J.G., van der Schans, M.J., Noort, D., and Johnson, R.C., Anal. Chem., 2010, vol. 82, no. 15, p. 6593.CrossRefGoogle Scholar
  9. 9.
    Williams, N.H., Harrison, J.M., Read, R.W., and Black, R.M., Arch. Toxicol., 2007, vol. 81, no. 9, p. 627.CrossRefGoogle Scholar
  10. 10.
    Bao, Y., Liu, Q., Chen, J., Lin, Y., Wu, B., and Xie, J., J. Chromatogr. A, 2012, vol. 1229, p. 164.CrossRefGoogle Scholar
  11. 11.
    Ding, S.-J., Carr, J., Carlson, J.E., Tong, L., Xue, W., Li, Y., Schopfer, L.M., Li, B., Nachon, F., Asojo, O., Thompson, C.M., Hinrichs, S.H., Masson, P., and Lockridge, O., Chem. Res. Toxicol., 2008, vol. 21, no. 9, p. 1787.CrossRefGoogle Scholar
  12. 12.
    Crow, B.S., Pantazides, B.G., Quiñones-González, J., Garton, J.W., Carter, M.D., Perez, J.W., Watson, C.M., Tomcik, D.J., Crenshaw, M.D., Brewer, B.N., Riches, J.R., Stubbs, S.J., Read, R.W., Evans, R.A., Thomas, J.D., Blake, T.A., and Johnson, R.C., Anal. Chem., 2014, vol. 86, no. 20, p. 10397.CrossRefGoogle Scholar
  13. 13.
    Schopfer, L.M., Grigoryan, H., Li, B., Nachon, F., Masson, P., and Lockridge, O., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2010, vol. 878, nos. 17–18, p. 1297.CrossRefGoogle Scholar
  14. 14.
    Wisniewski, J.R., Anal. Chem., 2016, vol. 88, no. 10, p. 5438.CrossRefGoogle Scholar
  15. 15.
    Gowd, K.H., Krishnan, K.S., and Balaram, P., Mol. BioSyst., 2007, vol. 3, no. 8, p. 554.CrossRefGoogle Scholar
  16. 16.
    Koryagina, N.L, Savel’eva, E.I., Karakashev, G.V., Babakov, V.N., Dubrovskii, Ya.A., Ukolova, E.S., Khlebnikova, N.S., Murashko, E.A., Koneva, V.Yu., Ukolov, A.I., Kopeikin, V.A., and Radilov, A.S., J. Anal. Chem., 2016, vol. 71, no. 8, p. 849.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. N. Stavrianidi
    • 1
    • 2
    Email author
  • A. V. Braun
    • 2
    • 3
  • E. A. Stekolshchikova
    • 1
  • T. M. Baygildiev
    • 1
  • I. A. Rodin
    • 1
  • I. V. Rybalchenko
    • 2
    • 3
  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Kostroma State UniversityKostromaRussia
  3. 3.Laboratory for the Chemical and Analytical Control, Military Research Centre, Ministry of Defense of the Russian FederationMoscowRussia

Personalised recommendations