Journal of Analytical Chemistry

, Volume 73, Issue 14, pp 1364–1371 | Cite as

Assessment of Bioproduction Relevance in the Photic Layer Anoxia Conditions at the Formation of Dispersed Organic Matter of Source Rocks and Oils by Mass Spectrometry Data

  • M. B. SmirnovEmail author
  • E. N. Poludetkina


A procedure is proposed for estimating the content of individual groups of compounds, anoxia markers, in the photic layer of the sedimentation basin and their total content in fractions of oils and dispersed organic matter. Appropriate variants of data presentation are analyzed. Based on the data on the common content of anoxia markers, a method has been proposed for answering the question of whether hydrogen sulfide contamination was permanent, covering the major part of the water column, or there was an episodic infection spread to a limited water layer. These data also allow the assessment of the role of organic matter formed under anoxic conditions in its total balance. A composition parameter is proposed that ensures the determination of the similarities in the conditions of organic matter transformation in different rocks.


oil dispersed organic matter aromatic carotenoids anoxia markers analysis by mass spectrometry GC–MS alkylbenzenes fraction of aromatic compounds 



This work was performed in the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences (no. 79) within the State Contract with the Federal Agency of Scientific Organizations (project of the Program of Basic Research of the Russian Academy of Sciences, topic no. 2, code 44).


  1. 1.
    Summons, R.E. and Powell, T.G., Geochim. Cosmochim. Acta, 1987, vol. 51, no. 3, p. 557.CrossRefGoogle Scholar
  2. 2.
    Hartgers, W.A., Sinninghe Damsté, J.S., Req-uejo, A.G., et al., Org. Geochem., 1994, vol. 22, nos. 3–5, p. 703.CrossRefGoogle Scholar
  3. 3.
    Koopmans, M.P., Köster, J., Van Kaam-Peters, H.M.E., et al., Geochim. Cosmochim. Acta, 1996, vol. 60, no. 22, p. 4467.CrossRefGoogle Scholar
  4. 4.
    Clifford, D.J., Clayton, J.L., and Damste, J.S.S., Org. Geochem., 1998, vol. 29, nos. 5–7, p. 1253.CrossRefGoogle Scholar
  5. 5.
    Brocks, J.J., Love, G.D., Summons, R.E., et al., Nature, 2005, vol. 437, no. 6, p. 866.CrossRefGoogle Scholar
  6. 6.
    Brocks, J.J. and Schaeffer, P., Geochim. Cosmochim. Acta, 2008, vol. 72, no. 5, p. 1396.CrossRefGoogle Scholar
  7. 7.
    Ostrouhov, S.B., Aref’ev, O.A., and Makushina, V.M., Neftekhimiya, 1982, vol. 22, no. 6, p. 723.Google Scholar
  8. 8.
    Requejo, A.G., Allan, J., Greaney, S., et al., Org. Geochem., 1992, vol. 19, nos. 1–3, p. 245.CrossRefGoogle Scholar
  9. 9.
    Requejo, A.G., Sassen, R., Kinnekutt, M.C. II, et al., Org. Geochem., 1995, vol. 23, no. 3, p. 205.CrossRefGoogle Scholar
  10. 10.
    Zhang, C., Zhang, Y., and Cai, C., Org. Geochem., 2011, vol. 42, no. 7, p. 851.CrossRefGoogle Scholar
  11. 11.
    Junior, G.R.S., Santos, A.L.S., de Lima, S.G., et al., Org. Geochem., 2013, vol. 63, p. 94.CrossRefGoogle Scholar
  12. 12.
    Zhang, S., Huang, H., Su, J., et al., Org. Geochem., 2014, vol. 77, p. 126.CrossRefGoogle Scholar
  13. 13.
    Peters, K.E., Walters, C.C., and Moldovan, J.M., The Biomarker Grude: Biomarkers and Isotopes in the Petroleum Exploration and Earth History, Cambridge: Cambridge Univ. Press, 2005, 2nd ed.Google Scholar
  14. 14.
    Cao, C., Love, G.D., Hais, L.E., et al., Earth Planet. Sci. Lett., 2009, vol. 281, p. 188.CrossRefGoogle Scholar
  15. 15.
    Bushnev, D.A., Pet. Chem., 2002, vol. 42, no. 5, p. 291.Google Scholar
  16. 16.
    Bushnev, D.A., Lithol. Miner. Resour., 2005, vol. 40, no. 1, p. 21.CrossRefGoogle Scholar
  17. 17.
    Bochkarev, V.A., Ostrouhov, S.B., and Sianisyan, S.E., Uspekhi organicheskoi geokhimii. Materialy Vseross. nauchn. konf. (Advances in Organic Geochemistry: Proc. All-Russian Sci. Conf.), Novosibirsk, 2010, p. 64.Google Scholar
  18. 18.
    Pevneva, G.S., Golovko, A.K., and Fursenko, E.A., Uspekhi organicheskoi geokhimii. Materialy Vseross. nauchn. konf. (Advances in Organic Geochemistry: Proc. All-Russian Sci. Conf.), Novosibirsk, 2010, p. 269.Google Scholar
  19. 19.
    Bushnev, D.A., Burdel’naya, N.S., Ponomarenko, E.S., et al., Lithol. Miner. Resour., 2016, vol. 51, no. 4, p. 283.CrossRefGoogle Scholar
  20. 20.
    Bushnev, D.A., Burdel’naya, N.S., Valyaeva, O.V., et al., Geol. Geofiz., 2017, vol. 58, nos. 3–4, p. 410.Google Scholar
  21. 21.
    Brodskii, E.S., in Metody issledovaniya sostava organicheskikh soedinenii nefti i bitumoidov (Methods for Studying the Composition of Organic Compounds of Oil and Bitumen), Moscow: Nauka, 1985, p. 57.Google Scholar
  22. 22.
    Tissot, B.P. and Welte, D.H., Petroleum Formation and Occurrence, Berlin: Springer, 1984, 2nd ed.CrossRefGoogle Scholar
  23. 23.
    Safonova, G.I., Reliktovye struktury v uglevodorodakh neftei razlichnykh stratigraficheskikh podrazdelenii (Relict Structures in Oil Hydrocarbons of Various Stratigraphic Subdivisions), Moscow: Nedra, 1980.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Geology, Moscow State UniversityMoscowRussia

Personalised recommendations