Advertisement

Journal of Analytical Chemistry

, Volume 73, Issue 14, pp 1347–1352 | Cite as

Novel Reactive Matrices for the Analysis of Alcohols by Matrix-Assisted Laser Desorption/Ioization Mass Spectrometry

  • M. S. Slyundina
  • R. S. BorisovEmail author
  • V. G. Zaikin
ARTICLES

Abstract

A possibility of using a number of aromatic and heteroaromatic carboxylic acids and their halogen anhydrides as reactive matrix compounds for the analysis of alcohols of different structures by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry has been studied. It is shown that the acylation of alcohols with nicotinic and quinoline-6-carboxylic acid chlorides gives derivatives with high desorption/ionization efficiency under MALDI conditions, and that the free acids formed as a result of the hydrolysis of anhydrides act as matrix compounds. The proposed approach is tested on a number of aliphatic, alicyclic, and aromatic alcohols.

Keywords:

reactive matrix derivatization acylation alcohols aromatic acids heteroaromatic acids diols MALDI mass spectrometry 

Notes

ACKNOWLEDGMENTS

The work was carried out within the framework of the State Task of the Institute of Petrochemical Synthesis RAS with the financial support of the Federal Agency of Scientific Organization of the Russian federation. The works on the optimization of the procedures for obtaining alcohol derivatives were carried out with the financial support of the Russian Foundation for Basic Research, project no. 18-33-00729.

REFERENCES

  1. 1.
    Zaikin, V. and Halket, J., Handbook of Derivatives for Mass Spectrometry, Chichester: IM Publ., 2009.Google Scholar
  2. 2.
    Zhang, L.-K. and Gross, M.L., J. Am. Soc. Mass Spectrom., 2002, vol. 13, no. 12, p. 1418.CrossRefGoogle Scholar
  3. 3.
    Brombacher, S., Owen, S.J., and Volmer, D.A., Anal. Bioanal. Chem., 2003, vol. 376, no. 6, p. 773.CrossRefGoogle Scholar
  4. 4.
    Teuber, K., Fedorova, M., Hoffmann, R., et al., Anal. Lett., 2012, vol. 45, no. 9, p. 968.CrossRefGoogle Scholar
  5. 5.
    Shigeri, Y., Ikeda, Sh., Yasuda, A., et al., J. Mass Spectrom., 2014, vol. 49, no. 8, p. 742.CrossRefGoogle Scholar
  6. 6.
    Mugo, S.M. and Bottaro, C.S., Rapid Commun. Mass Spectrom., 2008, vol. 22, no. 8, p. 1087.CrossRefGoogle Scholar
  7. 7.
    Slyundina, M.S., Polovkov, N.Yu., Borisov, R.S., et al., J. Anal. Chem., 2017, vol. 72, no.13, p. 1295.CrossRefGoogle Scholar
  8. 8.
    Zaikin, V.G., Borisov, R.S., Polovkov, N.Y., et al., Eur. J. Mass Spectrom., 2015, vol. 21, no. 3, p. 403.CrossRefGoogle Scholar
  9. 9.
    Zaikin, V.G., Borisov, R.S., and Polovkov, N.Yu., et al., J. Anal. Chem., 2012, vol. 67, no. 13, p. 1001.CrossRefGoogle Scholar
  10. 10.
    Flinders, B., Morrell, J., Marshall, P.S., et al., Anal. Bioanal. Chem., 2015, vol. 407, no. 8, p. 2085.CrossRefGoogle Scholar
  11. 11.
    Bollineni, R.C., Hoffmann, R., and Fedorova, M., J. Proteomics, 2011, vol. 74, no. 11, p. 2338.CrossRefGoogle Scholar
  12. 12.
    Zengin, G. and Huffman, J., Synthesis, 2004, no. 12, p. 1932.Google Scholar
  13. 13.
    Borisov, R.S., Polovkov, N.Yu., Zhilyaev, D.I., et al., J. Anal. Chem., 2014, vol. 69, no. 14, p. 1351.CrossRefGoogle Scholar
  14. 14.
    Borisov, R.S., Zhilyaev, D.I., Polovkov, N.Yu., et al., Rapid Commun. Mass Spectrom., 2014, vol. 28, no. 21, p. 2231.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. S. Slyundina
    • 1
  • R. S. Borisov
    • 1
    Email author
  • V. G. Zaikin
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations