Journal of Analytical Chemistry

, Volume 73, Issue 14, pp 1334–1342 | Cite as

High-Precision Determination of the 238U/235U Isotope Ratio in Rocks by Multicollector Inductively Coupled Plasma Mass Spectrometry

  • G. V. MandzhievaEmail author
  • A. S. Sadasyuk
  • I. V. Chernyshev
  • K. N. Shatagin
  • A. V. Chugaev
  • B. I. Gareev


The paper describes the high-precision U-isotope analysis of rocks. The analysis is based on multicollector inductively coupled plasma mass spectrometry (MC−ICP−MS) and includes, as an essential part, the three-step ion-exchange chromatography separation of uranium from chemically complex solutions. In the analysis, the 235U and 238U mass-bias of the MC−ICP−MS is corrected against the reference ratio of 233U and 236U in a double-spike added. The doublespiking precedes sample chemical digestion. This approach is useful as it corrects isotope data for a possible U-isotope fractionation that could have occurred in the chemical preparation of samples. The double-spike 236U/233U is 1.03183 ± 0.00005. The extraction procedure ensures uranium yield of more than 80%. The accuracy of the analysis was estimated by the study of 238U/235U in an international standard sample IRMM-3184 as well as in monitor samples. The uncertainty was estimated at ±0.008% (2SD), which is comparable with the accuracy of the results previously published by foreign researches. The analysis was elaborated for studying natural 238U/235U ratio variations. It was used by the authors for the high-precision determination of the U-isotope composition in rocks (granites, shales, volcanic rocks) and U-bearing minerals.


inductively coupled plasma mass spectrometry MC−ICP−MS isotopes 238U and 235rocks 



This work was supported by the Russian Science Foundation, project no. 16-17-10221.

We are grateful to M.V. Muravyev and N.I. Serdyuk for technical provision of the work of mass spectrometers.


  1. 1.
    Proceedings of an International Symposium on the Oklo Phenomenon, Libreville, Gabon, West Africa, 1975.Google Scholar
  2. 2.
    Steiger, R.H. and Jager, E., Earth Planet. Sci. Lett., 1977, vol. 36, no. 3, p. 359.CrossRefGoogle Scholar
  3. 3.
    Stirling, C.H., Andersen, M.B., Potter, E.K., and Halliday, A.N., Earth Planet. Sci. Lett., 2007, vol. 264, nos. 1–2, p. 208.CrossRefGoogle Scholar
  4. 4.
    Brennecka, G.A., Wasylenki, L.E., Bargar, J.R., Weyer, S., and Anbar, A.D., Environ. Sci. Technol., 2011, vol. 45, no. 4, p. 1370.CrossRefGoogle Scholar
  5. 5.
    Hiess, J., Condon, D.J., McLean, N., and Noble, S.R., Science, 2012, vol. 335, no. 6076, p. 1610.CrossRefGoogle Scholar
  6. 6.
    Romaniello, S.J., Herrmann, A.D., and Anbar, A.D., Chem. Geol., 2013, vol. 362, p. 305.CrossRefGoogle Scholar
  7. 7.
    Rolison, J.M., Stirling, C.H., Middag, R., and Rijkenbergmicha, J.A., Geochim. Cosmochim. Acta, 2017, vol. 203, p. 69.CrossRefGoogle Scholar
  8. 8.
    Bopp, C.J., Lundstrom, C.C., Johnson, T.M., and Glessner, J.J.G., Geology, 2009, vol. 37, p. 611.CrossRefGoogle Scholar
  9. 9.
    Golubev, V.N., Chernyshev, I.V., Chugaev, A.V., Eremina, A.V., Baranova, A.N., and Krupskaya, V.V., Geol. Rudn. Mestorozhd., 2013, no. 6, p. 1.Google Scholar
  10. 10.
    Murthy, M.J., Stirling, C.H., Kaltenbach, A., Turner, S.P., and Schaefer, B.F., Earth Planet. Sci. Lett., 2014, vol. 388, p. 306.CrossRefGoogle Scholar
  11. 11.
    Chernyshev, I.V., Golubev, V.N., Chugaev, A.V., and Baranova, A.N., Geochem. Int., 2014, vol. 52, no. 12, p. 1013.CrossRefGoogle Scholar
  12. 12.
    Placzek, C.J., Heikoop, J.M., House, B., Linhoff, B.S., and Pelizza, M., Chem. Geol., 2016, vol. 437, p. 44.CrossRefGoogle Scholar
  13. 13.
    Pupyshev, A.A. and Sermyagin, B.A., Diskriminatsiya ionov po masse pri izotopnom analize metodom mass-spek trometrii s induktivno svyazannoi plazmoi (Discrimination of Ions by Mass in Isotopic Analysis by Inductively Coupled Plasma–Mass Spectrometry), Yekaterinburg, 2006.Google Scholar
  14. 14.
    Weyer, S., Anbar, A.D., Gerdes, A., Gordon, G.W., Algeo, T.J., and Boyle, E.A., Geochim. Cosmochim. Acta, 2008, vol. 72, p. 345.CrossRefGoogle Scholar
  15. 15.
    Kendall, B., Brennecka, G.A., Weyer, S., and Anbar, A.D., Chem. Geol., 2013, vol. 362, p. 105.CrossRefGoogle Scholar
  16. 16.
    Montoya-Pino, C., Weyer, S., Anbar, A.D., Pross, J., Oschmann, W., van de Schootbrugge, B., and Arz, H.W., Geology, 2010, vol. 38, p. 315.CrossRefGoogle Scholar
  17. 17.
    Samuelson, O., Ion Exchange Separations in Analytical Chemistry, New York: Wiley, 1963.CrossRefGoogle Scholar
  18. 18.
    Kramchaninov, A.Yu., Chernyshev, I.V., and Shatagin, K.N., J. Anal. Chem., 2012, vol. 67, no. 14, p. 1084.CrossRefGoogle Scholar
  19. 19.
    Richter, S., Eykens, R., Kuhn, H., Aregbe, Y., Verbruggen, A., and Weyer, S., Int. J. Mass Spectrom., 2010, vol. 295, nos. 1–2, p. 94.CrossRefGoogle Scholar
  20. 20.
    Nemerov, V.K., Stanevich, A.M., Razvozzhaeva, E.A., et al., Geol. Geofiz., 2010, vol. 51, no. 5, p. 729.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • G. V. Mandzhieva
    • 1
    Email author
  • A. S. Sadasyuk
    • 1
  • I. V. Chernyshev
    • 1
  • K. N. Shatagin
    • 1
  • A. V. Chugaev
    • 1
  • B. I. Gareev
    • 2
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences (IGEM RAS), MoscowRussia
  2. 2.Kazan (Volga region) Federal UniversityKazanRussia

Personalised recommendations