Advertisement

Journal of Analytical Chemistry

, Volume 73, Issue 14, pp 1327–1333 | Cite as

Раrаdохical Sесоndаrу Emissiоn Mаss Sресtrum оf thе Lеuсо Fоrm оf Mеthуlеnе Bluе

  • M. V. KosevichEmail author
  • O. A. Boryak
  • V. S. Shelkovsky
  • V. G. Zobnina
  • V. V. Orlov
ARTICLES
  • 8 Downloads

Abstract

A paradoxical relation between the secondary emission mass spectra of Methylene Blue and its leuco form is revealed: in the mass spectrum of the dye cation Cat+ (oxidized form with the molecular weight 284), an intense product of its reduction with m/z 285 is recorded, while the mass spectrum of the leuco dye (reduced form with the molecular weight 285) corresponds to an oxidized form with a dominating peak at m/z 284. An explanation of this empirical fact is proposed: the redox reactions induced by ionizing factors under the conditions of secondary emission experiments pass in the direction permitted for the particular initial form of the redox-active compound. Namely, an oxidized form undergoes reduction, whereas the reduced form is oxidized. This effect should be taken into account for the correct identification of redox-active compounds by their secondary emission mass spectra and for simulating redox reactions in the systems containing redox-active dyes under mass spectrometric conditions.

Keywords:

Methylene Blue cationic dye leuco form redox reactions secondary emission mass spectrometry 

Notes

REFERENCES

  1. 1.
    Vekey, K. and Zerilli, L.F., Org. Mass Spectrom., 1991, vol. 26, no. 11, p. 939.CrossRefGoogle Scholar
  2. 2.
    Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Practicalities, and Biological Applications, Cole, R.B., Ed., Hoboken: Wiley, 2010, 2nd ed.Google Scholar
  3. 3.
    Butterfield, D.A. and Dalle-Donne, I., Mass Spectrom. Rev., 2014, vol. 33, no. 1, p. 1.CrossRefGoogle Scholar
  4. 4.
    Gilardi, G. and Fantuzzi, A., Trends Biotechnol., 2001, vol. 19, no. 11, p. 468.CrossRefGoogle Scholar
  5. 5.
    Kosevich, M.V., Boryak, O.A., Chagovets, V.V., Shelkovsky, V.S., and Pokrovskiy, V.A., Interactions of biologically active redox-sensitive dyes with nanomaterials: mass spectrometric diagnostics, in Nanobiphysics: Fundamental and Applications, Karachevtsev, V.A., Ed., Singapore: Pan Stanford, 2016, p. 179.Google Scholar
  6. 6.
    Shelkovskii, V.S., Biofiz. Vestn., 2015, vol. 33, no. 1, p. 5.Google Scholar
  7. 7.
    Pelzer, G., Pauw, E.D., and Marien, J., J. Phys. Chem., 1984, vol. 88, no. 21, p. 5065.CrossRefGoogle Scholar
  8. 8.
    Gale, P.J., Bentz, B.L., Chait, B.T., Field, F.H., and Cotter, R.J., Anal. Chem., 1986, vol. 58, no. 6, p. 1070.CrossRefGoogle Scholar
  9. 9.
    Burinsky, D.J., Dilliplane, R.L., DiDonato, G.C., and Busch, K.L., Org. Mass Spectrom., 1988, vol. 23, no. 4, p. 231.CrossRefGoogle Scholar
  10. 10.
    Kazakoff, C.W. and Rye, R.T.B., Org. Mass Spectrom., 1991, vol. 26, no. 3, p. 154.CrossRefGoogle Scholar
  11. 11.
    Kyranos, J.N. and Vouros, P., Biol. Mass Spectrom., 1990, vol. 19, no. 10, p. 628.CrossRefGoogle Scholar
  12. 12.
    Aubagnac, J.L., Gilles, I., Lazaro, R., Claramunt, R.M., Gosselin, G., and Martinez, J., Rapid Commun. Mass Spectrom., 1995, vol. 9, no. 6, p. 509.CrossRefGoogle Scholar
  13. 13.
    Itoh, Y., Ohashi, Y., Shibue, T., Hayashi, A., Maki, S., Hirano, T., and Niwa, H., J. Mass Spectrom. Soc. Jpn., 2002, vol. 50, no. 2, p. 52.CrossRefGoogle Scholar
  14. 14.
    Ohashi, Y. and Itoh, Y., Curr. Org. Chem., 2003, vol. 7, no. 15, p. 1605.CrossRefGoogle Scholar
  15. 15.
    Okuno, S., Nakano, M., Matsubayashi, G.E., Arakawa, R., and Wada, Y., Rapid Commun. Mass Spectrom., 2004, vol. 18, no. 23, p. 2811.CrossRefGoogle Scholar
  16. 16.
    Asakawa, D. and Hiraoka, K., J. Mass Spectrom., 2009, vol. 44, no. 4, p. 461.CrossRefGoogle Scholar
  17. 17.
    Kosevich, M.V., Boryak, O.A., Orlov, V.V., Shelkovsky, V.S., Chagovets, V.V., Stepanian, S.G., Karachevtsev, V.A., and Adamowisz, L., J. Mass Spectrom., 2006, vol. 41, no. 1, p. 113.CrossRefGoogle Scholar
  18. 18.
    Kosevich, M.V., Chagovets, V.V., Shmigol, I.V., Snegir, S.V., Boryak, O.A., Orlov, V.V., Shelkovsky, V.S., Pokrovskiy, V.A., and Gomory, A., J. Mass Spectrom., 2008, vol. 43, no. 10, p. 1402.CrossRefGoogle Scholar
  19. 19.
    Fesenko, T.V., Kosevich, M.V., Surovtseva, N.I., Pok-rovskii, V.A., Eremenko, A.M., and Smirnova, N.P., Mass-Spektrom., 2007, vol. 4, no. 4, p. 289.Google Scholar
  20. 20.
    Shmigol, I.V., Alekseev, S.A., Lavrynenko, O.Yu., Vasylieva, N.S., Zaitsev, V.N., Barbier, D., and Pokrovsky, V.A., J. Mass Spectrom., 2009, vol. 44, no. 8, p. 1234.CrossRefGoogle Scholar
  21. 21.
    Chagovets, V.V., Kosevich, M.V., Stepanian, S.G., Boryak, O.A., Shelkovsky, V.S., Orlov, V.V., Leontiev, V.S., Pokrovskiy, V.A., Adamowicz, L., and Karachevtsev, V.A., J. Phys. Chem. C, 2012, vol. 116, no. 38, p. 20579.CrossRefGoogle Scholar
  22. 22.
    Shelkovsky, V.S., Kosevich, M.V., Boryak, O.A., Chagovets, V.V., Shmigol, I.V., and Pokrovskiy, V.A., RSC Adv., 2014, vol. 4, no. 104, p. 60260.CrossRefGoogle Scholar
  23. 23.
    Methylene Blue, PubChem Open Chemistry Database, U.S. National Library of Medicine, National Center for Biotechnology Information’s Web Site, 2017. https://pubchem.ncbi.nlm.nih.gov/compound/6099. Accessed August 31, 2017.Google Scholar
  24. 24.
    Scheindlin, S., Mol. Interventions, 2008, vol. 8, no. 6, p. 268.CrossRefGoogle Scholar
  25. 25.
    Schirmer, R.H., Adler, H., Pickhardt, M., and Mandelkow, E., Neurobiol. Aging, 2011, vol. 32, no. 12, p. 2325.CrossRefGoogle Scholar
  26. 26.
    Ohlow, M.J. and Moosmann, B., Drug Discovery Today, 2011, vol. 16, nos. 3–4, p. 119.CrossRefGoogle Scholar
  27. 27.
    Methylene blue, IARC Monogr. Eval. Carcinog. Risks Hum., 2016, vol. 108, p. 155.Google Scholar
  28. 28.
    Mashkovskii, M.D., Lekarstvennye sredstva (Medicinal Products), Moscow: Meditsina, 1988, vol. 2.Google Scholar
  29. 29.
    Wainwright, M. and Crossley, K.B., J. Chemother., 2002, vol. 14, no. 5, p. 431.CrossRefGoogle Scholar
  30. 30.
    Wu, X., Ying, T., and Sun, K., J. Shanghai Univ., 1998, vol. 2, no. 2, p. 156.CrossRefGoogle Scholar
  31. 31.
    Yao, H., Li, N., Xu, S., Xu, J.-Z., Zhu, J.-J., and Chen, H.-Y., Biosens. Bioelectron., 2005, vol. 21, no. 2, p. 372.CrossRefGoogle Scholar
  32. 32.
    Tiwari, I. and Singh, M., Microchim. Acta, 2011, vol. 174, nos. 3–4, p. 223.CrossRefGoogle Scholar
  33. 33.
    Ferapontova, E.E., Curr. Anal. Chem., 2011, vol. 7, no. 1, p. 51.CrossRefGoogle Scholar
  34. 34.
    Stoikova, E.E., Gol’dfarb, O.E., Belyakova, S.V., Evtyugin, G.A., Budnikov, G.K., and Suprun, E.V., Vestn. Tatar. Otd. Ross. Ekol. Akad., 2003, no. 3, p. 51.Google Scholar
  35. 35.
    García-González, R., Costa-García, A., and Fernández-Abedul, M.T., Sens. Actuators, B, 2014, vol. 191, p. 784.CrossRefGoogle Scholar
  36. 36.
    Thayer, A.M., Chem. Eng. News, 2011, vol. 89, no. 12, p. 16.CrossRefGoogle Scholar
  37. 37.
    Ginimuge, P.R. and Jyothi, S.D., J. Anaesthesiol., Clin. Pharmacol., 2010, vol. 26, no. 4, p. 517.Google Scholar
  38. 38.
    Piruzyan, L.A., Kovalev, I.E., and Kovaleva, V.L., Biol. Bull. Russ. Acad. Sci., 2001, vol. 28, no. 5, p. 477.CrossRefGoogle Scholar
  39. 39.
    Tardivo, J.P., Del Giglio, A., Santos de Oliveira, C., Gabrielli, D.S., Couto Junqueira, H., Batista Tada, D., Severino, D., de Fátima Turchiello, R., and Baptista, M.S., Photodiagn. Photodyn. Ther., 2005, vol. 2, no. 3, p. 175.CrossRefGoogle Scholar
  40. 40.
    Chang, E., Honson, N.S., Bandyopadhyay, B., Funk, K.E., Jensen, J.R., Kim, S., Naphade, S., and Kuret, J., Curr. Alzheimer Res., 2009, vol. 6, no. 5, p. 409.CrossRefGoogle Scholar
  41. 41.
    Akoury, E., Pickhardt, M., Gajda, M., Biernat, J., Mandelkow, E., and Zweckstetter, M., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, no. 12, p. 3511.CrossRefGoogle Scholar
  42. 42.
    Crowe, A., James, M.J., Lee, V.M.-Y., Smith, A.B. III, Trojanowski, J.Q., Ballatore, C., and Brunden, K.R., J. Biol. Chem., 2013, vol. 288, no. 16, p. 11024.CrossRefGoogle Scholar
  43. 43.
    Schweers, O., Mandelkow, E.M., Biernat, J., and Mandelkow, E., Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, no. 18, p. 8463.CrossRefGoogle Scholar
  44. 44.
    Rojas, J.C., Bruchey, A.K., and Gonzalez-Lima, F., Prog. Neurobiol., 2012, vol. 96, no. 1, p. 32.CrossRefGoogle Scholar
  45. 45.
    Atamna, H., Nguyen, A., Schultz, C., Boyle, K., Newberry, J., Kato, H., and Ames, B.N., FASEB J., 2008, vol. 22, no. 3, p. 703.CrossRefGoogle Scholar
  46. 46.
    Oz, M., Lorke, D.E., Hasan, M., and Petroianu, G.A., Med. Res. Rev., 2011, vol. 31, no. 1, p. 93.CrossRefGoogle Scholar
  47. 47.
    Oz, M., Lorke, D.E., and Petroianu, G.A., Biochem. Pharmacol., 2009, vol. 78, no. 8, p. 927.CrossRefGoogle Scholar
  48. 48.
    Leucomethylene Blue, PubChem Open Chemistry Database, U.S. National Library of Medicine, National Center for Biotechnology Information’s Web Site, 2017. https://pubchem.ncbi.nlm.nih.gov/ compound/Leucomethylene_blue. Accessed August 31, 2017.Google Scholar
  49. 49.
    Engerer, S.C. and Cook, A.G., J. Chem. Educ., 1999, vol. 76, no. 11, p. 1519.CrossRefGoogle Scholar
  50. 50.
    Anderson, L., Wittkopp, S., Painter, C., Liegel, J.J., Schreiner, R., Bell, J.A., and Shakhashiri, B.Z., J. Chem. Educ., 2012, vol. 89, no. 11, p. 1425.CrossRefGoogle Scholar
  51. 51.
    Terenin, A.N., Fotonika molekul krasitelei i rodstvennykh organicheskikh soedinenii (Photonics of the Molecules of Dyes and Related Organic Compounds), Leningrad: Nauka, 1967.Google Scholar
  52. 52.
    Gnaser, H., Savina, M.R., Calaway, W.F., Tripa, C.E., Veryovkin, I.V., and Pellin, M.J., Int. J. Mass Spectrom. Ion Processes, 2005, vol. 245, nos. 1–3, p. 61.CrossRefGoogle Scholar
  53. 53.
    Gabovich, V.O. and Pokrovs’kii, V.O., Poverkhnost’, 2011, vol. 3, no. 18, p. 191.Google Scholar
  54. 54.
    Xu, J., Dai, L., Wu, B., Ding, T., Zhu, J.J., Lin, H., Chen, H.L., Shen, C.Y., and Jiang, Y., J. Sep. Sci., 2009, vol. 32, nos. 23–24, p. 4193.CrossRefGoogle Scholar
  55. 55.
    Clunas, S., et al., US Patent 9283230, 2011.Google Scholar
  56. 56.
    Links from PubChem Compound, PubChem Compound Database, U.S. National Library of Medicine. National Center for Biotechnology Information’s Web Site, 2017. http://www.ncbi.nlm.nih.gov/pccompound?cmd=Link& LinkName=pccompound_pccompound_mixture& from_uid=164695. Accessed August 31, 2017.Google Scholar
  57. 57.
    Shelkovskii, V.S., Kosevich, M.V., Boryak, O.A., Zobnina, V.G., and Plokhotnichenko, A.M., Biofiz. Vestn., 2017, vol. 37, no. 1, p. 30.Google Scholar
  58. 58.
    Reynolds, J.D., Cook, K.D., Burn, J.L., and Woods, C., J. Am. Soc. Mass Spectrom., 1992, vol. 3, no. 2, p. 113.CrossRefGoogle Scholar
  59. 59.
    The Analytical Chemistry of Synthetic Dyes, Venkataraman, K., Ed., New York: Wiley, 1977.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. V. Kosevich
    • 1
    Email author
  • O. A. Boryak
    • 1
  • V. S. Shelkovsky
    • 1
  • V. G. Zobnina
    • 1
  • V. V. Orlov
    • 1
  1. 1.Vеrkin Institutе fоr Lоw Tеmреrаturе Рhуsiсs аnd Еnginееring, Nаtiоnаl Асаdеmу оf Sсiеnсеs оf UkrаinеKhаrkivUkraine

Personalised recommendations