Advertisement

Journal of Analytical Chemistry

, Volume 73, Issue 13, pp 1292–1300 | Cite as

A Study of Novel Organic Optoelectronics Materials Based on Thiophene and Silicon by Time-of-Flight Laser Desorption/Ionization Mass Spectrometry

  • A. P. PleshkovaEmail author
  • E. S. Kuznetsova
ARTICLES
  • 19 Downloads

Abstract

The results of investigation of a variety of new organic semiconductors for optoelectronics based on thiophene and silicon by time-of-flight direct laser desorption/ionization mass spectrometry are presented. The peculiarities of the behavior of these species are analyzed. The main ionization route for many of the compounds was found to be the only formation of a molecular radical cation. For a small group of species, protonation and deprotonation were observed rather than the above path. However, there are some molecules for which several competing routes were detected, namely, the formation of a molecular radical cation, protonation, and deprotonation

Keywords:

direct laser desorption/ionization time-of-flight mass spectrometry organic optoelectronics materials based on thiophene and silicon molecular radical cations protonation cationization deprotonation 

Notes

ACKNOWLEDGMENTS

We are grateful to Professor A.T. Lebedev for useful advises in the discussion of the results obtained.

REFERENCES

  1. 1.
    Ponomarenko, S. and Krichmeyer, S., Adv. Polymer Sci., 2011, vol. 235, p. 33.CrossRefGoogle Scholar
  2. 2.
    Operamolla, A. and Farinola, G.M., Eur. J. Org. Chem., 2011, vol. 2011, no. 3, p. 423.CrossRefGoogle Scholar
  3. 3.
    Mishra, A., Ma, Ch.-Qi., and Bauerle, P., Chem. Rev., 2009, vol. 109, no. 3, p. 1141.CrossRefGoogle Scholar
  4. 4.
    Ponomarenko, S.A., Extended Abstract of Doctoral (Chem.) Dissertation, Moscow: Enikolopov Inst. Synth. Polym. Mater., Russ. Acad. Sci., 2010.Google Scholar
  5. 5.
    MALDI MS: A Practical Guide to Instrumentation, Methods and Applications, 2 Hillenkamp, F. and Peter-Katalinic, J., Eds., New York: Wiley, 2007.Google Scholar
  6. 6.
    Kosevich, M.V., Chagovets, V.V., Shmigol, I.V., Snegir, S.V., Boryak, O.A., Orlov, V.V., Shelkovsky, V.S., Pokrovskiy, V.A., and Gomory, A., J. Mass Spectrom., 2008, vol. 43, no. 10, p. 1402.CrossRefGoogle Scholar
  7. 7.
    Scholz, S., Corten, C., Walzer, K., Kuckling, D., and Leo, K., Org. Electron., 2007, vol. 8, no. 6, p. 709.CrossRefGoogle Scholar
  8. 8.
    Scholz, S., Walzer, K., and Leo, K., Adv. Funct. Mater., 2008, vol. 18, no. 17, p. 2541.CrossRefGoogle Scholar
  9. 9.
    Scholz, S., Meerheim, R., Lüssem, B., and Leo, K., Appl. Phys. Lett., 2009, vol. 94, no. 4, 043314.CrossRefGoogle Scholar
  10. 10.
    Woldegiorgis, A., von Kieseritzky, F., Dahlstedt, E., Hellberg, J., Brinck, T., and Roeraade, J., Rapid Commun. Mass Spectrom., 2004, vol. 18, no. 5, p. 841.CrossRefGoogle Scholar
  11. 11.
    Soltzberg, L.J. and Patel, P., Rapid Commun. Mass Spectrom., 2004, vol. 18, no. 8, p. 1455.CrossRefGoogle Scholar
  12. 12.
    Robb, D. and Blades, M.W., J. Am. Soc. Mass Spectrom., 1997, vol. 8, no. 12, p. 1203.CrossRefGoogle Scholar
  13. 13.
    Liu, J., Loewe, R.S., and McCullough, R.D., Macromolecules, 1999, vol. 32, no. 18, p. 5777.CrossRefGoogle Scholar
  14. 14.
    McCarley, T.D., Noble, Ch.O., Du Bois, C.J. IV, and McCarley, R.L., Macromolecules, 2001, vol. 34, no. 23, p. 7999.CrossRefGoogle Scholar
  15. 15.
    Ma, Zh., Qiang, L.-L., Fan, Q.-L., Wang, Y.-Y., Pu, K.-Y., Yin, R., and Huang, W., J. Mass Spectrom., 2007, vol. 42, no. 1, p. 20.CrossRefGoogle Scholar
  16. 16.
    De Winter, J., Deshayes, G., Boon, F., Coulembier, O., Dubois, Ph., and Gerbaux, P., J. Mass Spectrom., 2011, vol. 46, no. 3, p. 237.CrossRefGoogle Scholar
  17. 17.
    Zhang, J., Ellis, H., Yang, L., Johansson, E.M.J., Boschloo, G., Vlachopoulos, N., Hagfeldt, A., Bergquist, J., and Shevchenko, D., Anal. Chem., 2015, vol. 87, no. 7, p. 3942.CrossRefGoogle Scholar
  18. 18.
    Ma, Ch.-Qi, Mena-Osteritz, E., Debaerdemaeker, T., Wienk, M.M., Janssen, R.A.J., and Bauerle, P., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, no. 10, p. 1679.CrossRefGoogle Scholar
  19. 19.
    Mizukado, J., Sato, H., Chen, L., Suzuki, Ya., Yamane, Sh., Aoyama, Yo., Yoshida, Yu., and Suda, H., J. Mass Spectrom., 2015, vol. 50, no. 8, p. 1006.CrossRefGoogle Scholar
  20. 20.
    Sauerland, V. and Schindler, R.N., Eur. J. Mass Spectrom., 1997, vol. 3, no. 9, p. 185.CrossRefGoogle Scholar
  21. 21.
    Sukharev, Yu.N., Sizoi, V.F., and Nekrasov, Yu.S., Org. Mass Spectrom., 1981, vol. 16, no. 1, p. 23.CrossRefGoogle Scholar
  22. 22.
    Knochenmuss, R., Mass Spectrosc. (Tokyo), 2013, vol. 2, no. 1 (special issue), S0006.Google Scholar
  23. 23.
    Hoteling, A., Nichols, W.F., Giesen, D.J., Lenhard, J.R., and Knochenmuss, R., Eur. J. Mass Spectrom., 2006, vol. 12, no. 6, p. 345.CrossRefGoogle Scholar
  24. 24.
    Markov, V.Yu., Borschevsky, A.Ya., and Sidorov, L.N., Int. J. Mass Spectrom. Ion Processes, 2012, vols. 325–327, p. 100.CrossRefGoogle Scholar
  25. 25.
    Calba, P.J., Muller, J.F., and Inouye, M., Rapid Commun. Mass Spectrom., 1998, vol. 12, no. 22, p. 1727.CrossRefGoogle Scholar
  26. 26.
    Lou, X., Sinkeldam, R.W., van Houts, W., Nicolas, Y., Janssen, P.G.A., van Dongen, J.L.J., Vekemans, J.A.J.M., and Meijer, E.W., J. Mass Spectrom., 2007, vol. 42, no. 3, p. 293.CrossRefGoogle Scholar
  27. 27.
    Lou, X., Spiering, A.J.H., de Waal, B.F.M., van Dongen, J.L.J., Vekemans, J.A.J.M., and Meijer, E.W., J. Mass Spectrom., 2008, vol. 43, no. 8, p. 1110.CrossRefGoogle Scholar
  28. 28.
    Nagoshi, K., Inatomi, K., Osaka, I., and Takayama, M., Mass Spectrosc. (Tokyo), 2016, vol. 5, no. 1, A0048.Google Scholar
  29. 29.
    Funston, A.M., Silverman, E.E., Miller, J.R., and Schanze, K.S., J. Phys. Chem. B, 2004, vol. 108, no. 5, p. 1544.CrossRefGoogle Scholar
  30. 30.
    Abdelhamid, H.N., TrAC, Trends Anal. Chem., 2017, vol. 89, p. 68.CrossRefGoogle Scholar
  31. 31.
    Juhasz, P. and Costello, C.E., Rapid Commun. Mass Spectrom., 1993, vol. 7, no. 5, p. 343.CrossRefGoogle Scholar
  32. 32.
    Lidgard, R. and Duncan, M.W., Rapid Commun. Mass Spectrom., 1995, vol. 9, no. 2, p. 128.CrossRefGoogle Scholar
  33. 33.
    McCarley, T.D., McCarley, R.L., and Limbach, P.A., Anal. Chem., 1998, vol. 70, no. 20, p. 4376.CrossRefGoogle Scholar
  34. 34.
    Macha, St.F., McCarley, T.D., and Limbach, P.A., Anal. Chim. Acta, 1999, vol. 397, nos. 1–3, p. 235.CrossRefGoogle Scholar
  35. 35.
    Boutaghou, M.N. and Cole, R.B., J. Mass Spectrom., 2012, vol. 47, no. 8, p. 995.CrossRefGoogle Scholar
  36. 36.
    Robins, Ch. and Limbach, P.A., Rapid Commun. Mass Spectrom., 2003, vol. 17, no. 24, p. 2839.CrossRefGoogle Scholar
  37. 37.
    Kumar, M.R., Raju, N.P., Reddy, T.J., Narahari, A., Reddy, M.J.R., and Vairamani, M., Rapid Commun. Mass Spectrom., 2005, vol. 19, no. 21, p. 3171.CrossRefGoogle Scholar
  38. 38.
    Aiello, I., Di Donna, L., Ghedini, M., La Deda, M., Napoli, A., and Sindona, G., Anal. Chem., 2004, vol. 76, no. 20, p. 5985.CrossRefGoogle Scholar
  39. 39.
    Wyatt, M.F., Havard, S., Stein, B.K., and Brehton, A.G., Rapid Commun. Mass Spectrom., 2008, vol. 22, no. 1, p. 11.CrossRefGoogle Scholar
  40. 40.
    Zhu, W., Wang, H.-Y., and Guo, Y.-L., J. Mass Spectrom., 2012, vol. 47, no. 3, p. 352.CrossRefGoogle Scholar
  41. 41.
    Brune, D.C., Rapid Commun. Mass Spectrom., 1999, vol. 13, no. 5, p. 384.CrossRefGoogle Scholar
  42. 42.
    Kruegel, A. and Attygalle, A.B., J. Am. Soc. Mass Spectrom., 2010, vol. 21, no. 1, p. 112.CrossRefGoogle Scholar
  43. 43.
    Handbook of Conducting Polymers, Scotheim, T.A., Reynolds, J.R., and Elsenbaumer, R.L., Eds., New York: Marcel Dekker, 1988.Google Scholar
  44. 44.
    Yasuda, A., Ishimaru, T., Nishihara, Sh., Sakai, M., Kawasaki, H., Arakawa, R., and Shigeri, Ya., Eur. J. Mass Spectrom., 2013, vol. 19, no. 1, p. 29.CrossRefGoogle Scholar
  45. 45.
    Thomas, J.J., Shen, Z., Blackledge, R., and Siuzdak, G., Anal. Chim. Acta, 2001, vol. 442, no. 2, p. 183.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations