Journal of Analytical Chemistry

, Volume 73, Issue 13, pp 1269–1274 | Cite as

An Improved Procedure for the Gas Chromatography–Tandem Mass Spectrometry Detection of the Globin Adduct of Sulfur Mustard

  • N. L. KoryaginaEmail author
  • M. D. Shachneva
  • A. I. Ukolov
  • E. I. Savel’eva
  • N. S. Khlebnikova
  • A. S. Radilov


Features of the electron and chemical ionization mass spectra of derivatives of N-[2-[(hydroxyethyl)thio]ethyl]-DL-valine (НЕТЕ-Val)—a biomarker of sulfur mustard—recorded by GC–MS and GC–MS/MS are studied. The retention indices of the studied derivatives were measured. An optimized procedure of the GC–MS/MS (MRM mode) identification of НЕТЕ-Val was tested in the analysis of donor blood samples in vitro exposed to sulfur mustard. The linear range of the detector was from 10 to 100 ng mL–1, and the limit of detection for sulfur mustard was 10 ng mL–1.


gas chromatography–mass spectrometry sulfur mustard globin adduct 



  1. 1.
    Ivanov, A., Chemical Weapons: From the Beginnings to the Present. vooruzhenie/376-khimicheskoe-oruzhie-ot-istokov-do-sovremennosti. Accessed May 20, 2017.Google Scholar
  2. 2.
    Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons and on Their Destruction, GE 92-61926, Paris, 2005.Google Scholar
  3. 3.
    Sokolov, B.V., Stovelikii voin (The Great Warrior), Moscow: Veche, 2000, 2001.Google Scholar
  4. 4.
    Benschop, H.P., van der Schans, G.P., Noort, D., Fidder, A., Mars-Groenendijk, R.H., and de Jong, L.P., J. Anal. Toxicol., 1997, vol. 21, p. 249.CrossRefGoogle Scholar
  5. 5.
    Black, R.M., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2010, vol. 878, nos. 17–18, p. 1207.Google Scholar
  6. 6.
    Orlova, O.I., Savel’eva, E.I., and Khlebnikova, N.S., J. Anal. Chem., 2013, vol. 68, no. 1, p. 1.CrossRefGoogle Scholar
  7. 7.
    Koryagina, N.L., Savel’eva, E.I., Ukolova, E.S., Ukolov, A.I., Khlebnikova, N.S., Voitenko, N.G., and Radilov, A.S., Toksikol. Vestn., 2013, no. 3, p. 21.Google Scholar
  8. 8.
    Rodin, I., Braun, A., Stavrianidi, A., Baygildiev, T., Shpigun, O., and Rybalchenko, I., J. Anal. Toxicol., 2015, vol. 39, no. 1, p. 69.CrossRefGoogle Scholar
  9. 9.
    Koryagina, N.L., Savel’eva, E.I., Khlebnikova, N.S., and Radilov, A.S., Mass-Spektrom., 2017, vol. 14, no. 2, p. 124.Google Scholar
  10. 10.
    Designation of Laboratories for the Analysis of Authentic Biomedical Samples and Guidelines for the Conduct of Biomedical Proficiency Tests< OPCW, 2015. laboratories_for_the_analysis_of_authentic_biomedical_ samples_and_guidelines_ for_the_conduct_of_biomedical_proficiency_tests. Accessed June 8, 2017.Google Scholar
  11. 11.
    Hambrook, J.L., Howells, D.J., and Schock, C., Xenobiotica, 1993, vol. 23, no. 5, p. 537.CrossRefGoogle Scholar
  12. 12.
    Noort, D., Fidder, A., Degenhardt-Langelaan, C.E., and Hulst, A.G., J. Anal. Toxicol., 2008, vol. 32, p. 25.CrossRefGoogle Scholar
  13. 13.
    Fidder, A., Noort, D., De Jong, A.L., et al., Chem. Res. Toxicol., 1996, vol. 9, p. 788.CrossRefGoogle Scholar
  14. 14.
    Black, R.M., Clarke, R.J., Harrison, J.M., and Read, R.W., Chem. Unserer Zeit, 1997, vol. 27, no. 5, p. 499.Google Scholar
  15. 15.
    Nie, Z., Zhang, Y., Dong, Y., Wu, B., Liu, Q., Feng, J., and Xie, J., Sci. Sin. Vit., 2011, vol. 41, p. 965.CrossRefGoogle Scholar
  16. 16.
    Xua, H., Niea, Z., Zhanga, Y., Li, C., Yuea, L., Yang, W., Chen, J., Dong, Y., Liua, Q., Lin, Y., Wu, B., Feng, J., Li, H., Guo, L., and Xie, J., Toxicol. Rep., 2014, vol. 1, no. 1, p. 533.CrossRefGoogle Scholar
  17. 17.
    Ovchinnikov, Yu. A., Bioorganicheskaya khimiya (Bioorganic Chemistry), Moscow: Prosveshchenie, 1987.Google Scholar
  18. 18.
    Bailey, E., Brooks, A.G., Dollery, C.T., Farmer, P.B., Passingham, B.J., Sleightholm, M.A., and Yates, D.W., Arch. Toxicol., 1988, vol. 62, no. 4, p. 247.CrossRefGoogle Scholar
  19. 19.
    Nie, Z., Liu, Q., and Xie, J., Talanta, 2011, vol. 85, p. 1154.CrossRefGoogle Scholar
  20. 20.
    Koryagina, N.L., Shachneva, M.D., Ukolov, A.I., Savel’eva, E.I., Khlebnikova, N.S., and Radilov, A.S., Abstracts of Papers, Vserossiiskaya nauchno-prakticheskay konferentsiya, posvyashchennaya 55-letiyu Nauchn.-issled. inst. gigieny, profpatalogii i ekologii cheloveka (All-Russian Sci. Pract. Conf. Dedicated to the 55th Anniversary of the Res. Inst. Hygiene, Occupational Pathology, and Ecology of Humans), St. Petersburg, 2017, p. 166.Google Scholar
  21. 21.
    Noort, D., Fidder, A., Benschop, H.P., de Jong, L.P.A., and Smith, J.R., J. Anal. Toxicol., 2004, vol. 28, p. 311.CrossRefGoogle Scholar
  22. 22.
    QDOC_LAB_WI_BioPT04_Iss_1_Rev_0. Work instruction for the reporting of the results of the OPCW biomedical proficiency tests.Google Scholar
  23. 23.
    Bailey, E., Brooks, A.G., Dollery, C.T., Farmer, P.B., Passingham, B.J., Sleightholm, M.A., and Yates, D.W., Arch. Toxicol., 1988, vol. 62, no. 4, p. 247.CrossRefGoogle Scholar
  24. 24.
    TD2015IDCR. Minimum criteria for chromatographic–mass-spectrometric confirmation of the identity of analytes for doping control purposes, WADA Technical Document, 2015.Google Scholar
  25. 25.
    Jones, C.R., Liu, Y.Y., Sepai, O., Yan, H., and Sabbioni, G., Carcinogenesis, 2005, vol. 26, p. 133.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. L. Koryagina
    • 1
    Email author
  • M. D. Shachneva
    • 1
  • A. I. Ukolov
    • 1
  • E. I. Savel’eva
    • 1
  • N. S. Khlebnikova
    • 1
  • A. S. Radilov
    • 1
  1. 1.Research Institute of Hygiene, Occupational Pathology, and Human Ecology, Federal Medical-Biological Agency of RussiaKuzmolovskyRussia

Personalised recommendations