Journal of Analytical Chemistry

, Volume 73, Issue 13, pp 1248–1252 | Cite as

Products of the Intermediate Oxidation of Flavonoids in Aqueous Solutions and the Determination of Their Composition by High-Performance Liquid Chromatography–Mass Spectrometry

  • V. V. KhasanovEmail author
  • K. A. Dychko
  • A. V. Labutin
  • S. S. Kravtsova
  • T. T. Kuryaeva


Using high-performance liquid chromatography in combination with electrospray ionization mass spectrometry [HPLC–MS-ESI(NEG)], quercetin [Q] and luteolin [L] intermediate oxidation products were investigated. It was found that, in aqueous solutions at pH 8.0 under aerobic conditions, quercetin forms double and triple donor-acceptor complexes of the composition {[Q][Q–H2]} and {[Q][Q–H2]2}, which can be separated by HPLC, but are rapidly converted to deeper oxidation products. In the presence of another flavonoid, luteolin (L), the oxidized form of quercetin also forms mixed complexes of {[L][Q–H2]} and {[L][Q–H2]2} types. Luteolin in the oxidation does not form donor-acceptor {[L][L–H2]} complexes. Quercetin in complexes with luteolin is always present in an oxidized form. It can be assumed that these complexes form as a result of the recombination of two radicals of flavonoids, which formed initially as a result of manifestation of the antioxidant properties (one-electron transfer). These transformations of flavonoids are possible if strict anaerobic conditions in their quantitative determination are not implemented.


quercetin luteolin aerobic oxidation dimeric and trimeric complexes HPLC/MS 



  1. 1.
    Willcox, J.K., Ash, S.L., and Catignani, G.L., Crit. Rev. Food Sci. Nutr., 2004, vol. 44, no. 4, p. 275.CrossRefGoogle Scholar
  2. 2.
    Jacobs, H., Moalin, M., Bast, A., Van der Vijgh, W., and Haenen, G., PLoS One, 2010, vol. 5, no. 11, p. 437.CrossRefGoogle Scholar
  3. 3.
    Vukics, V., Hevesi, B., Ringer, T., Ludanyi, K., Kery, A., Bonn, G.K., and Guttman, A., J. Chromatogr. Sci., 2008, vol. 46, no. 2, p. 97.CrossRefGoogle Scholar
  4. 4.
    Pourcel, L., Routaboul, J.M., Cheynier, V., Lepiniec, L., and Debeaujon, I., Trends Plant Sci., 2007, vol. 12, no. 1, p. 29.CrossRefGoogle Scholar
  5. 5.
    Galati, G., Moridani, M.Y., Chan, T.S., and O’Brien, P.J., Free Radical Biol. Med., 2001, vol. 30, no. 4, p. 370.CrossRefGoogle Scholar
  6. 6.
    Boersma, M.G., Vervoort, J., Szymusiak, H., Lemanska, K., Tyrakowska, B., Cenas, N., Segura-Aguilar, J., and Rietjens, I.M., Chem. Res. Toxicol., 2000, vol. 13, no. 3, p. 185.CrossRefGoogle Scholar
  7. 7.
    Awad, H.M., Boersma, M.G., Boeren, S., van Bladeren, P.J., Vervoort, J., and Rietjens, I.M., Chem. Res. Toxicol., 2001, vol. 14, no. 4, p. 398.CrossRefGoogle Scholar
  8. 8.
    Awad, H.M., Boersma, M.G., Boeren, S., Van der Woude, H., Van Zanden, J., Van Bladeren, P.J., Vervoort, J., and Rietjens, I.M., FEBS Lett., 2002, vol. 520, nos 1–3, p. 30.Google Scholar
  9. 9.
    Vervoort, J. and Rietjens, I.M., Chem. Res. Toxicol., 2002, vol. 15, no. 3, p. 343.CrossRefGoogle Scholar
  10. 10.
    Awad, H.M., Boersma, M.G., Boeren, S., Van Bladeren, P.J., Vervoort, J., and Rietjens, I.M., Chem. Res. Toxicol., 2003, vol. 16, no. 7, p. 822.CrossRefGoogle Scholar
  11. 11.
    Krishnamachari, W., Levine, L.H., and Pare, P.W., J. Agric. Food Chem., 2002, vol. 50, no. 15, p. 4357.CrossRefGoogle Scholar
  12. 12.
    Slabbert, N.P., Tetrahedron, 1977, vol. 33, no. 7, p. 821.CrossRefGoogle Scholar
  13. 13.
    Lin, L.M., Li, W.S., Chen, W.L., and Yeh, A., J. Chin. Chem. Soc., 2010, vol. 57, no. 4B, p. 883.CrossRefGoogle Scholar
  14. 14.
    Dall’Acqua, S., Miolo, G., Innocenti, G., and Caffieri, S., Molecules, 2012, vol. 17, no. 8, p. 8898.CrossRefGoogle Scholar
  15. 15.
    Zenkevich, I.G., Eshchenko, A.Yu., Makarova, S.V., Vitenberg, A.G., Dobryakov, Yu.G., and Utsal, V.A., Molecules, 2007, vol. 12, no. 3, p. 654.CrossRefGoogle Scholar
  16. 16.
    Sokolova, R., Ramesova, S., Degano, I., Hromadova, M., Gal, J., and Zabka, J., Chem. Commun., 2012, vol. 48, no. 28, p. 3433.CrossRefGoogle Scholar
  17. 17.
    Boots, A.W., Kubben, N., Haenen, G.R., and Bast, A., Biochem. Biophys. Res. Commun., 2003, vol. 308, no. 3, p. 560.CrossRefGoogle Scholar
  18. 18.
    Tsimogiannis, D., Samiotaki, M., Panayotou, G., and Oreopoulou, V., Molecules, 2007, vol. 12, no. 3, p. 593.CrossRefGoogle Scholar
  19. 19.
    Plazonic, A., Bucar, F., Males, Z., Mornar, A., Nigovic, B., and Kujundzic, N., Molecules, 2009, vol. 14, no. 7, p. 2466.CrossRefGoogle Scholar
  20. 20.
    Lee, J.S., Kim, D.H., Liu, K.-H., Oh, T.K., and Lee, C.H., Rapid Commun. Mass Spectrom., 2005, vol. 19, no. 23, p. 3539.CrossRefGoogle Scholar
  21. 21.
    Okwu, D.E. and Ukanwa, N., Chem. Sin., 2010, vol. 1, no. 2, p. 21.Google Scholar
  22. 22.
    Harbaum, B., Hubbermann, E.M., Wolff, C., Herges, R., Zhu, Z., and Schwarz, K., J. Agric. Food Chem., 2007, vol. 5, no. 20, p. 8251.CrossRefGoogle Scholar
  23. 23.
    Prasain, J.K., Wang, C.C., and Barnes, S., Free Radical Biol. Med., 2007, vol. 37, no. 9, p. 1324.CrossRefGoogle Scholar
  24. 24.
    Rijke, E., Zappey, H., Ariese, F., Gooijer, C., and Brinkman, U.A., Anal Bioanal. Chem., 2004, vol. 378, no. 4, p. 995.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. V. Khasanov
    • 1
    Email author
  • K. A. Dychko
    • 1
  • A. V. Labutin
    • 2
  • S. S. Kravtsova
    • 1
  • T. T. Kuryaeva
    • 1
  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Tomsk Regional NarkodispanserTomskRussia

Personalised recommendations