Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 2, pp 100–107 | Cite as

Fluorometric Determination of Artemisinin Using the Pyronin B–Microperoxidase-11 System

  • S. V. Muginova
  • E. S. Vakhraneva
  • D. A. Myasnikova
  • T. N. ShekhovtsovaEmail author
ARTICLES
  • 9 Downloads

Abstract

A sensitive, rapid, and simple fluorimetric procedure for the determination of artemisinin in a concentration range of 0.1–7 μM was developed with the use of microperoxidase-11 as a peroxidase biomimetic (RSD = 0.8% at LOQ, n = 5; LOD = 7.1 nM (3s0)). The determination is based on the fluorescence quenching of the cationic xanthene dye pyronin B (Stern–Volmer quenching constant, 0.101 μM–1) in the presence of microperoxidase-11. The procedure was tested in the analysis of a biologically active additive based on an Artemisia annua wormwood extract. The correctness of the results of the fluorimetric determination of artemisinin in a biologically active dietary supplement was confirmed by HPLC–mass spectrometry. The use of oligopeptide microperoxidase-11 instead of heme-containing proteins (hemoglobin, cytochrome c, and horseradish peroxidase) made it possible to shorten the duration of artemisinin determination by a factor of 2 with the retention of sensitivity and selectivity.

Keywords:

artemisinin microperoxidase-11 pyronin B fluorescence quenching 

Notes

ACKNOWLEDGMENTS

We are grateful to Cand. Sci. (Chem.) A.N. Stavrianidi (Moscow State University) for his assistance in the HPLC–MS analysis of BADS.

This work was supported by the Russian Foundation for Basic Research (project no. 15-03-05-064a).

REFERENCES

  1. 1.
    Artemisinin and artemisinin-based combination therapy resistance: Status report, Geneva: World Health Organization, 2017.Google Scholar
  2. 2.
    O’Neill, P.M., Barton, V.E., and Ward, S.A., Molecules, 2010, vol. 15, no. 3, p. 1705.CrossRefGoogle Scholar
  3. 3.
    Ellman, A., Outlooks Pest Manage., 2010, vol. 21, no. 2, p. 84.CrossRefGoogle Scholar
  4. 4.
    Soktoeva, T.E., Ryzhova, G.L., Dychko, K.A., Khasanov, V.V., Zhigzhitzhapova, S.V., and Radneva, L.D., Khim. Rastit. Syr’ya, 2011, no. 4, p. 131.Google Scholar
  5. 5.
    Ho, W.E., Peh, H.Y., Chan, T.K., and Wong, W.S., Pharmacol. Ther., 2014, vol. 142, no. 1, p. 126.CrossRefGoogle Scholar
  6. 6.
    Yang, X. and XZ, W., Mini-Rev. Med. Chem., 2015, vol. 15, no. 12, p. 1011.CrossRefGoogle Scholar
  7. 7.
    Das, A.K., Ann. Med. Health Sci. Res., 2015, vol. 5, no. 2, p. 93.CrossRefGoogle Scholar
  8. 8.
    Breuer, E. and Efferth, T., Nat. Prod. Bioprospect., 2014, vol. 4, no. 2, p. 113.CrossRefGoogle Scholar
  9. 9.
    Chen, L., Yin, H., Yang, Z., Zhang, K., Liu, L., and Shen, H., Chin. J. Anal. Chem., 2006, vol. 36, no. 2, p. 173.CrossRefGoogle Scholar
  10. 10.
    Chen, L., Zhang, Y., Yin, H., Liu, L., Yang, Z., and Shen, H., Wuhan Univ. J. Nat. Sci., 2006, vol. 11, no. 3, p. 704.CrossRefGoogle Scholar
  11. 11.
    Chen, L., Liu, L., and Shen, H., Chin. Sci. Bull., 2005, vol. 50, no. 17, p. 1834.CrossRefGoogle Scholar
  12. 12.
    Chen, L., Yin, H., Yang, Z., Zhang, K., Liu, L., and Shen, H., Chin. J. Anal. Chem., 2005, vol. 23, no. 8, p. 1047.CrossRefGoogle Scholar
  13. 13.
    Marconi, G., Monti, S., Manoli, F., Esposti, A.D., and Mayer, B., Chem. Phys. Lett., 2004, vol. 383, nos. 5–6, p. 566.CrossRefGoogle Scholar
  14. 14.
    Marques, H.M., Dalton Trans., 2007, no. 39, p. 4371.Google Scholar
  15. 15.
    Yarmann, A., Neumann, B., Bosserdt, M., Gajovich-Eichelmann, N., and Scheller, F.W., Biosensors, 2012, vol. 2, no. 2, p. 189.CrossRefGoogle Scholar
  16. 16.
    Miyazaki, C.M., Shimizu, F.M., Mejía-Salazar, J.R., Oliveira, O.N., Jr., and Ferreira, M., Nanotecnology, 2017, vol. 28, no. 14, 145501.CrossRefGoogle Scholar
  17. 17.
    Muginova, S.V., Vakhraneva, E.S., Myasnikova, D.A., Kazarian, S.G., and Shekhovtsova, T.N., Anal. Lett., 2018, vol. 51, no. 6, p. 870.CrossRefGoogle Scholar
  18. 18.
    Jung, M., Lee, K., Kendrick, H., Robinson, B.L., and Croft, S.L., J. Med. Chem., 2002, vol. 45, no. 2, p. 4940.CrossRefGoogle Scholar
  19. 19.
    Gur, B. and Meral, K., Spectrochim. Acta, Part A, 2013, vol. 101, no. 1, p. 306.CrossRefGoogle Scholar
  20. 20.
    Titford, M., Biotech. Histochem., 2007, vol. 82, nos. 4–5, p. 227.CrossRefGoogle Scholar
  21. 21.
    Oyadomari, M., Kabuto, M., Wariishi, H., and Tanaka, H., Biochem. Eng. J., 2003, vol. 15, no. 3, p. 159.CrossRefGoogle Scholar
  22. 22.
    Data for Biochemical Research, Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Johns, K.M., Eds., Oxford: Clarendon, 1988, 3rd ed.Google Scholar
  23. 23.
    Gaspar, S., Popescu, I.C., Gazaryan, I.G., Bautis-ta, A.G., Sakharov, I.Y., Mattiasson, B., and Csoregi, B., Electrochim. Acta, 2000, vol. 46, no. 2, p. 255.CrossRefGoogle Scholar
  24. 24.
    Bruce, G.R. and Gill, P.S., J. Chem. Educ., 1999, vol. 76, no. 6, p. 805.CrossRefGoogle Scholar
  25. 25.
    Onganer, Y. and Quitevis, E., J. Phys. Chem., 1992, vol. 96, no. 20, p. 7996.CrossRefGoogle Scholar
  26. 26.
    Toprak, M. and Arik, M., Turk. J. Chem., 2010, vol. 34, no. 2, p. 285.Google Scholar
  27. 27.
    O’Reilly, N. and Magner, E., Phys. Chem. Chem. Phys., 2011, vol. 13, no. 12, p. 5304.CrossRefGoogle Scholar
  28. 28.
    Liu, Y., Lu, H., and Pang, F., J. Chem. Eng. Data, 2009, vol. 54, no. 3, p. 762.CrossRefGoogle Scholar
  29. 29.
    Cayman Chemical Company. www.caymanchem.com/pdfs/11816.pdf. Accessed January 1, 2018.Google Scholar
  30. 30.
    Amponsaa-Karikari, A., Kishikawa, N., Ohba, Y., Nakashima, K., and Kuroda, N., Biomed. Chromatogr., 2006, vol. 20, no. 11, p. 1157.CrossRefGoogle Scholar
  31. 31.
    Denisov, E.T., Solodova, S.L., and Denisova, E.G., Russ. Chem. Rev., 2010, vol. 79, no. 11, p. 981.CrossRefGoogle Scholar
  32. 32.
    Green, M.D., Mount, D.L., Todd, G.D., and Capomacchia, A.C., J. Chromatogr. A, 1999, vol. 695, no. 2, p. 237.CrossRefGoogle Scholar
  33. 33.
    Wang, M., Park, C., Wu, Q., and Simon, J.E., J. Agric. Food Chem., 2005, vol. 53, no. 18, p. 7010.CrossRefGoogle Scholar
  34. 34.
    Liu, C-Z., Zhou, H-Y., and Zhao, Y., Anal. Chim. Acta, 2007, vol. 581, no. 2, p. 298.CrossRefGoogle Scholar
  35. 35.
    Bharati, A. and Sabat, S.C., Talanta, 2002, vol. 82, no. 3, p. 1033.CrossRefGoogle Scholar
  36. 36.
    Sreevidya, T.V. and Narayana, B., Indian J. Chem. Technol., 2008, vol. 15, no. 1, p. 59.Google Scholar
  37. 37.
    Bai, H., Wang, C., Chen, J., Peng, J., and Cao, Q., Biosens. Bioelectron., 2015, vol. 64, no. 2, p. 352.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. V. Muginova
    • 1
  • E. S. Vakhraneva
    • 1
  • D. A. Myasnikova
    • 2
  • T. N. Shekhovtsova
    • 1
    Email author
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Yokohama National UniversityYokohamaJapan

Personalised recommendations