Journal of Analytical Chemistry

, Volume 73, Issue 3, pp 249–256 | Cite as

Specific Features of Energy Dispersive X-Ray Electron Probe Microanalysis in the Low Vacuum Mode

Articles
  • 22 Downloads

Abstract

Experimental data on the generation and detection of characteristic X-radiation of elements in electron probe microanalysis of dielectric samples in the low vacuum mode without the deposition of conducting coatings are discussed. The main advantage of the considered method of analysis is the stability of the intensity ratio between diagnostic analyte lines in the wide range of currents of the electron probe and gas phase pressure in the chamber in the range 60–130 Pa, sufficient for obtaining undistorted images of the surface of dielectrics. The stability of the intensity ratio ensures obtaining correct data of the quantitative analysis of nonconducting samples without the deposition of conducting coatings. The main features of low-vacuum microanalysis for the range of gas phase pressures used are discussed, which can create additional difficulties in the study. Among such features is a possibility of the manifestation of reflexes of gas-phase elements, significant underestimation of the relative emission intensity from lighter elements in the composition of the studied samples, loss of scanning locality in the analysis of small sites on the sample surface. An example of the correct quantitative elemental analysis of a dielectric surface without the deposition of an electroconductive coating for a number of aluminosilicates is presented.

Keywords

X-ray electron probe surface analysis dielectric materials effect of charge accumulation low-vacuum scanning electron microscopy intensity of characteristic emission line local surface analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taskaev, S.V., Galimov, D.M., Zherebtsov, D.A., Khovailo, V.V., Gorshenkov, M.V., Vasil’ev, A.N., Golovanov, A.N., Volkova, O.S., and Timoshenko, V.Yu., Chelyab. Fiz.-Mat. Zh., 2014, vol. 330, no. 1, p.68.Google Scholar
  2. 2.
    Newbury, D.E. and Ritchie, N.W.M., Scanning, 2013, vol. 35, no. 3, p.141.CrossRefGoogle Scholar
  3. 3.
    Lavrent’ev, Yu.G., Karmanov, N.S., and Usova, L.V., Russ. Geol. Geophys., vol. 56, no. 8, p. 2015.Google Scholar
  4. 4.
    Zot’ev, D.V., Filippov, M.N., and Yagola, A.G., Vychisl. Metody Program., 2003, vol. 4, no. 1, p.26.Google Scholar
  5. 5.
    Kupriyanova, T.A., Minikaev, L.R., Tangishev, R.R., Stepovich, M.A., and Filippov, M.N., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2013, vol. 7, no. 2, p.268.CrossRefGoogle Scholar
  6. 6.
    Andrianov, M.V., Aristov, V.V., Gostev, A.V., and Rau, E.I., Poverkhnost’, 2004, no. 3, p.40.Google Scholar
  7. 7.
    Maslovskaya, A.G., Russ. Phys. J., 2010, vol. 53, no. 1, p.36.CrossRefGoogle Scholar
  8. 8.
    Cazaux, J., J. Electron Spectrosc. Relat. Phenom., 1999, vol. 105, nos. 2–3, p.155.CrossRefGoogle Scholar
  9. 9.
    Kortov, V.S. and Zvonarev, S.V., Mat. Model., 2008, vol. 20, no. 6, p.79.Google Scholar
  10. 10.
    Khouchaf, L., Gaseous scanning electron microscope (GSEM): Applications and improvement, in Scanning Electron Microscopy, InTech China, 2001, p.3.Google Scholar
  11. 11.
    Newbury, D.E., J. Res. Natl. Inst. Stand. Technol., 2002, vol. 107, no. 6, p.567.CrossRefGoogle Scholar
  12. 12.
    Reed, S.J.B., Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, New York: Cambridge University Press, 2005.CrossRefGoogle Scholar
  13. 13.
    Rau, E.I., Evstaf’eva, E.N., and Andrianov, M.V., Phys. Solid State, 2008, vol. 50, no. 4, p.621.CrossRefGoogle Scholar
  14. 14.
    Newbury, D.E. and Ritchie, N.W.M., J. Mater. Sci., 2015, vol. 50, no. 2, p. 493.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Yaroslavl Branch, Physical Technical InstituteRussian Academy of SciencesYaroslavlRussia
  2. 2.Physical FacultyDemidov Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations